Comparison of Structural Response Utilizing Probabilistic Seismic Hazard Analysis and Design Spectral Ground Motion
Vol. 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Construction and Design"
Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Construction and Design"
Downloads
Doi: 10.28991/CEJ-SP2024-010-012
Full Text: PDF
Pranowo, ., Makrup, L., Pawirodikromo, W., & Muntafi, Y. (2024). Comparison of Structural Response Utilizing Probabilistic Seismic Hazard Analysis and Design Spectral Ground Motion. Civil Engineering Journal, 10, 235–251. https://doi.org/10.28991/CEJ-SP2024-010-012
[1] Saputro I.T. (2016). Evaluation of the response of multi-storey building structures using time history based on the PSHA method with shallow crustal earthquake sources. Master Thesis, Magister Teknik Sipil Univesitas Islam Indonesia Yogyakarta, Indonesia. (In Indonesian).
[2] Pawirodikromo, W. (2019). On the capacity of high, moderate and low earthquake frequency content to cause global drift ratio at level-2 of structural performance. MATEC Web of Conferences, 258, 05027. doi:10.1051/matecconf/201925805027.
[3] Utomo, J. (2019). Seismic performance evaluation of special moment frame using Perform 3D. Journal Media Komunikasi Teknik Sipil, 25(1), 27–37.
[4] Widodo, P. (2023). Contibution of normalized Hysteritic Energy to damage Index in inelastic response of SDOF Structure due to earthquake. Journal Teknisia, 28(01), 055–069.
[5] Bayati, Z., & Soltani, M. (2016). Ground motion selection and scaling for seismic design of RC frames against collapse. Earthquake and Structures, 11(3), 445–459. doi:10.12989/eas.2016.11.3.445.
[6] Irsyam, M., & Hendriyawan, D. AD (2003) Seismic Hazard Assessment LNG Storage Tank Terminal Teluk Banten. Report of Seismic Hazard Study, Bandung, Indonesia.
[7] Pawirodikromo, W., Makrup, L., Teguh, M., & Anggit, M. (2019). Bidirectional and Directivity Effect Identifications of Synthetic Ground Motions At Selected Site in Yogyakarta City , Indonesia. International Journal of Civil Engineering and Technology, 10(11), 149–166.
[8] Artati, H. (2024). Liquefaction Potential Using a State Parameter Approach Based on Earthquake Peak Ground Acceleration Generated From Codes, Deterministic and Probabilistic Seismic Hazard Analysis. Dissertation Faculty of Civil Engineering, Islamic University of Indonesia, Yogyakarta, Indonesia.
[9] Nugroho, N. S., Erizal1, Putra, H. (2021). Structure evaluation of building based on the earthquake response acceleration spectrum of the SNI 03-1726-2019. IOP Conference Series: Earth and Environmental Science, 871(1), 012013. doi:10.1088/1755-1315/871/1/012013.
[10] Rocky, M. (2023). Earthquake Hazard Probability Analysis Of Indonesia's New Capital City. Journal Media Komunikasi Teknik Sipil, 28(2), 284–291.
[11] SNI 1726. (2019). Earthquake Resistance Planning Procedures for Building and Non-Building Structures Badan Standarisasi Nasional (BSN), Jakarta, Indonesia. (In Indonesian).
[12] Kramer, S.L. (1996) Geotechnical Earthquake Engineering. Prentice-Hall, New Jersey, United States.
[13] Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California*. Bulletin of the Seismological Society of America, 34(4), 185–188. doi:10.1785/bssa0340040185.
[14] Sadigh, K., Chang, C. Y., Egan, J. A., Makdisi, F., & Youngs, R. R. (1997). Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismological Research Letters, 68(1), 180–189. doi:10.1785/gssrl.68.1.180.
[15] Youngs, R. R., Chiou, S. J., Silva, W. J., & Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68(1), 58–73. doi:10.1785/gssrl.68.1.58.
[16] Boore, D. M., & Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01s and 10.0s. Earthquake Spectra, 24(1), 99–138. doi:10.1193/1.2830434.
[17] ERPI. (1986). Seismic Hazard Methodology for the Central and Eastern United States. Electric Power Research Institute (ERPI), Palo Alto, United States.
[18] Nikolaou, A. S. (1998). A GIS platform for earthquake risk analysis. State University of New York at Buffalo. Ph.D. Thesis, State University of New York at Buffalo, Buffalo, United States.
[19] Cornell, C. A., & Vanmarcke, E. H. (1969). The major influences on seismic risk. Proceedings of the fourth world conference on earthquake engineering, 13-18 January, 1969, Santiago, Chile.
[20] Youngs, R. R., & Coppersmith, K. J. (1986). Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 23(4), 125. doi:10.1016/0148-9062(86)90651-0.
[21] McGuire, R. K. (1976). EQRISK: Evaluation of earthquake risk to site. Open File Report, 76, 67, A Computer Program Distributed by NISEE/Computer Applications, Geological Survey, United States Department of the Interior, Washington, United States.
[22] Bardet, J. P., & Tobita, T. (2001). NERA: a computer program for nonlinear earthquake site response analyses of layered soil deposits. Department of Civil Engineering, University of Southern California, California, United States.
[2] Pawirodikromo, W. (2019). On the capacity of high, moderate and low earthquake frequency content to cause global drift ratio at level-2 of structural performance. MATEC Web of Conferences, 258, 05027. doi:10.1051/matecconf/201925805027.
[3] Utomo, J. (2019). Seismic performance evaluation of special moment frame using Perform 3D. Journal Media Komunikasi Teknik Sipil, 25(1), 27–37.
[4] Widodo, P. (2023). Contibution of normalized Hysteritic Energy to damage Index in inelastic response of SDOF Structure due to earthquake. Journal Teknisia, 28(01), 055–069.
[5] Bayati, Z., & Soltani, M. (2016). Ground motion selection and scaling for seismic design of RC frames against collapse. Earthquake and Structures, 11(3), 445–459. doi:10.12989/eas.2016.11.3.445.
[6] Irsyam, M., & Hendriyawan, D. AD (2003) Seismic Hazard Assessment LNG Storage Tank Terminal Teluk Banten. Report of Seismic Hazard Study, Bandung, Indonesia.
[7] Pawirodikromo, W., Makrup, L., Teguh, M., & Anggit, M. (2019). Bidirectional and Directivity Effect Identifications of Synthetic Ground Motions At Selected Site in Yogyakarta City , Indonesia. International Journal of Civil Engineering and Technology, 10(11), 149–166.
[8] Artati, H. (2024). Liquefaction Potential Using a State Parameter Approach Based on Earthquake Peak Ground Acceleration Generated From Codes, Deterministic and Probabilistic Seismic Hazard Analysis. Dissertation Faculty of Civil Engineering, Islamic University of Indonesia, Yogyakarta, Indonesia.
[9] Nugroho, N. S., Erizal1, Putra, H. (2021). Structure evaluation of building based on the earthquake response acceleration spectrum of the SNI 03-1726-2019. IOP Conference Series: Earth and Environmental Science, 871(1), 012013. doi:10.1088/1755-1315/871/1/012013.
[10] Rocky, M. (2023). Earthquake Hazard Probability Analysis Of Indonesia's New Capital City. Journal Media Komunikasi Teknik Sipil, 28(2), 284–291.
[11] SNI 1726. (2019). Earthquake Resistance Planning Procedures for Building and Non-Building Structures Badan Standarisasi Nasional (BSN), Jakarta, Indonesia. (In Indonesian).
[12] Kramer, S.L. (1996) Geotechnical Earthquake Engineering. Prentice-Hall, New Jersey, United States.
[13] Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California*. Bulletin of the Seismological Society of America, 34(4), 185–188. doi:10.1785/bssa0340040185.
[14] Sadigh, K., Chang, C. Y., Egan, J. A., Makdisi, F., & Youngs, R. R. (1997). Attenuation relationships for shallow crustal earthquakes based on California strong motion data. Seismological Research Letters, 68(1), 180–189. doi:10.1785/gssrl.68.1.180.
[15] Youngs, R. R., Chiou, S. J., Silva, W. J., & Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismological Research Letters, 68(1), 58–73. doi:10.1785/gssrl.68.1.58.
[16] Boore, D. M., & Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01s and 10.0s. Earthquake Spectra, 24(1), 99–138. doi:10.1193/1.2830434.
[17] ERPI. (1986). Seismic Hazard Methodology for the Central and Eastern United States. Electric Power Research Institute (ERPI), Palo Alto, United States.
[18] Nikolaou, A. S. (1998). A GIS platform for earthquake risk analysis. State University of New York at Buffalo. Ph.D. Thesis, State University of New York at Buffalo, Buffalo, United States.
[19] Cornell, C. A., & Vanmarcke, E. H. (1969). The major influences on seismic risk. Proceedings of the fourth world conference on earthquake engineering, 13-18 January, 1969, Santiago, Chile.
[20] Youngs, R. R., & Coppersmith, K. J. (1986). Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 23(4), 125. doi:10.1016/0148-9062(86)90651-0.
[21] McGuire, R. K. (1976). EQRISK: Evaluation of earthquake risk to site. Open File Report, 76, 67, A Computer Program Distributed by NISEE/Computer Applications, Geological Survey, United States Department of the Interior, Washington, United States.
[22] Bardet, J. P., & Tobita, T. (2001). NERA: a computer program for nonlinear earthquake site response analyses of layered soil deposits. Department of Civil Engineering, University of Southern California, California, United States.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
