Optimizing Fire Safety and Ventilation Strategies for Structural Integrity in Rail Tunnels
Downloads
Doi: 10.28991/CEJ-2025-011-02-014
Full Text: PDF
[2] Bjelland, H., Gehandler, J., Meacham, B., Carvel, R., Torero, J. L., Ingason, H., & Njå, O. (2024). Tunnel fire safety management and systems thinking: Adapting engineering practice through regulations and education. Fire Safety Journal, 146, 104140. doi:10.1016/j.firesaf.2024.104140.
[3] Tarada, F., & King, M. (2009). Structural fire protection of railway tunnels. Railway Engineering Conference, 24-25 June, 2009, University of Westminster, London, United Kingdom.
[4] Long, Z., Zhong, M., Chen, J., & Cheng, H. (2023). Study on emergency ventilation strategies for various fire scenarios in a double-island subway station. Journal of Wind Engineering and Industrial Aerodynamics, 235, 105364. doi:10.1016/j.jweia.2023.105364.
[5] Xu, D., Li, Y., Li, J., Zhong, H., Li, J., & Huang, Y. (2024). Climate-adaptive fire smoke ventilation strategies for atrium-type metro stations: A NSGA-II multi-objective optimisation study. Energy, 306, 132390. doi:10.1016/j.energy.2024.132390.
[6] Ingason, H., Li, Y. Z., & Lönnermark, A. (2015). Tunnel fire dynamics. Springer, New York, United States. doi:10.1007/978-1-4939-2199-7.
[7] Wang, H., Binder, E., Mang, H., Yuan, Y., & Pichler, B. (2018). Multiscale structural analysis inspired by exceptional load cases concerning the immersed tunnel of the Hong Kong-Zhuhai-Macao Bridge. Underground Space (China), 3(4), 252–267. doi:10.1016/j.undsp.2018.02.001.
[8] Feist, C., Aschaber, M., & Hofstetter, G. (2009). Numerical simulation of the load-carrying behavior of RC tunnel structures exposed to fire. Finite Elements in Analysis and Design, 45(12), 958–965. doi:10.1016/j.finel.2009.09.010.
[9] Long, X., & Guo, H. (2016). Fire Resistance Study of Concrete in the Application of Tunnel-like Structures. Procedia Engineering, 166, 13–18. doi:10.1016/j.proeng.2016.11.531.
[10] Avcı-Karataş, Ç. (2022). Examination of preliminary studies on the preparation of Yalova provincial disaster risk reduction plan (İRAP). 8. International Engineering and Technology Congress, 8-10 December, 2022, Istanbul, Türkiye. (In Turkish)
[11] Krausmann, E., & Mushtaq, F. (2008). A qualitative Natech damage scale for the impact of floods on selected industrial facilities. Natural Hazards, 46(2), 179–197. doi:10.1007/s11069-007-9203-5.
[12] Avcı-Karataş, Ç., & Taşkin, K. (2023). Current Modeling Techniques for Reviewing Fire Safety in Road/Highway Tunnels. 5th International Congress on Engineering Sciences and Multidisciplinary Approaches, 25-26 February, İstanbul, Türkiye.
[13] El-Arabi, I. A., Duddeck, H., & Ahrens, H. (1992). Structural analysis for tunnels exposed to fire temperatures. Tunneling and Underground Space Technology, 7(1), 19–24. doi:10.1016/0886-7798(92)90109-u.
[14] Davidy, A. (2016). CFD studies of tunnel fire growth on composite lining materials. International Refereed Journal of Engineering and Science, 5(4), 1-6.
[15] AASHTO. (2012). AASHTO LRFD Bridge Design Specifications (5th Ed.). American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.
[16] Document 32004L0054. (2004). Directive 2004/54/EC of the European Parliament and of the Council of 29 April 2004 on minimum safety requirements for tunnels in the Trans-European Road Network. The European Parliament and the Council, Luxembourg, Belgium. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32004L0054 (accessed on January 2025).
[17] Document 32019L1936. (2019). Directive (EU) 2019/1936 of the European Parliament and of the Council of 23 October 2019 amending Directive 2008/96/EC on road infrastructure safety management. The European Parliament and the Council, Luxembourg, Belgium. Available online: https://eur-lex.europa.eu/eli/dir/2019/1936/oj/eng (accessed on January 2025).
[18] ITA-Working Group No. 6. (2004). Maintenance and Repair: Guidelines for Structural Fire Resistance for Road Tunnels. International Tunneling Association (ITA), Chí¢telaine, Switzerland.
[19] EN 1991-1-2. (2002). Eurocode 1: Actions on Structures – Part 1-2: General Actions – Actions on Structures Exposed to Fire. European Committee for Standardization, Brussels, Belgium.
[20] European Union. (2021). EU Road Safety Policy Framework 2021-2030 – Recommendations on Next Steps Towards "Vision Zero”. European Parliament, Strasbourg, France.
[21] Channel Tunnel: Wikipedia (2024). The Free Encyclopedia, Wikimedia Foundation, 2024. Available online: https://en.wikipedia.org/wiki/Channel_Tunnel (accessed on January 2025).
[22] GFDRR. (2024). Annual Report 2023: Bringing Resilience to Scale. Global Facility for Disaster Reduction and Recovery. The World Bank, Washington, United States.
[23] European Commission. (2024). Economics for Disaster Prevention and Preparedness (EDPP): From Data to Decisions. European Commission, Brussels, Belgium.
[24] RAIB. (2011). Derailment in Summit Tunnel, Near Todmorden, West Yorkshire, 28 December 2010. Rail Accident Report, Report 16/2011, Rail Accident Investigation Branch (RAIB), Derby, United Kingdom.
[25] Catmur, J., King, K., & Tarada, F. (2023). A Service Analysis of the Mont Blanc Tunnel Fire. Proceedings of the Safety Critical Systems Symposium (SSS'23), 7-9 February, 2023, York, United Kingdom.
[26] Jeon, G., & Hong, W. (2009). Characteristic features of the behavior and perception of evacuees from the Daegu subway fire and safety measures in an underground fire. Journal of Asian Architecture and Building Engineering, 8(2), 415-422. doi:10.3130/jaabe.8.415.
[27] Meyer, H. J. (2003). The Kaprun cable car fire disaster - Aspects of forensic organisation following a mass fatality with 155 victims. Forensic Science International, 138(1–3), 1–7. doi:10.1016/S0379-0738(03)00352-9.
[28] Stucchi, R., & Amberg, F. (2020). A Practical Approach for Tunnel Fire Verification. Structural Engineering International, 30(4), 515–529. doi:10.1080/10168664.2020.1772697.
[29] Tarada, F. (2007). Improving road tunnel safety. Eurotransport, 5, 35-39.
[30] Selamet, S. (2022). Fire Engineering, Nobel Akademik Yayıncılık, Ankara, Türkiye. Available online: https://www.nobelyayin.com/yangin-muhendisligi-18495.html (accessed on January 2025).
[31] Gales, J., Chorlton, B., & Jeanneret, C. (2021). The Historical Narrative of the Standard Temperature–Time Heating Curve for Structures. Fire Technology, 57(2), 529–558. doi:10.1007/s10694-020-01040-7.
[32] Thomas, P. H., & Heselden, A. J. M. (1962). Behaviour of fully developed fire in an enclosure. Combustion and Flame, 6(C), 133–135. doi:10.1016/0010-2180(62)90081-0.
[33] Kawagoe, K. (1958). Fire Behavior in Rooms: Report No. 27. Building Research Institute, Ministry of Construction, Tokyo, Japan.
[34] Kawagoe, K., & Sekine, T. (1963). Estimation of Fire Temperature-Time Curve in Rooms – Report No. 11. Building Research Institute, Ministry of Construction, Tokyo, Japan.
[35] Franssen, J. M. (2005). SAFIR: A thermal/structural program for modeling structures under fire. Engineering Journal, 42(3), 143–150. doi:10.62913/engj.v42i3.856.
[36] Cadorin, J. F., & Franssen, J. M. (2003). A tool to design steel elements submitted to compartment fires - OZone V2. Part 1: Pre- and post-flashover compartment fire model. Fire Safety Journal, 38(5), 395–427. doi:10.1016/S0379-7112(03)00014-6.
[37] Lumet, E. (2024). Assessing and reducing uncertainty in large-eddy simulation for microscale atmospheric dispersion. PhD Thesis, Université de Toulouse, Toulouse, France.
[38] Beausoleil-Morrison, I. (2002). The adaptive conflation of computational fluid dynamics with whole-building thermal simulation. Energy and Buildings, 34(9), 857–871. doi:10.1016/S0378-7788(02)00061-0.
[39] Seike, M., Ejiri, Y., Kawabata, N., & Hasegawa, M. (2014). Suggestion of estimation method of smoke generation rate by CFD simulation and fire experiments in full-scale tunnels. Journal of Fluid Science and Technology, 9(2), JFST0018. doi:10.1299/jfst.2014jfst0018.
[40] Seike, M., Kawabata, N., & Hasegawa, M. (2016). Experiments of evacuation speed in smoke-filled tunnel. Tunneling and Underground Space Technology, 53, 61–67. doi:10.1016/j.tust.2016.01.003.
[41] Thomas, P. H. (1958). The movement of buoyant fluid against a stream and the venting of underground fires. Fire safety science, 351, 1-1.
[42] Oka, Y., & Atkinson, G. T. (1995). Control of smoke flow in tunnel fires. Fire Safety Journal, 25(4), 305–322. doi:10.1016/0379-7112(96)00007-0.
[43] Ingason, H., & Lönnermark, A. (2004). Recent achievements regarding measuring of time-heat and time-temperature development in tunnels. 1st international symposium on safe & reliable tunnels, 4-6 February, Prague, Czech Republic.
[44] Li, Y. Z., & Ingason, H. (2016). Influence of ventilation on tunnel fires with and without water-based suppression systems. SP Technical Research Institute of Sweden, Borås, Sweden.
[45] Nakahori, I., Sakaguchi, T., Kohl, B., Forster, C., & Vardy, A. (2015). Risk assessment of zero-flow ventilation strategy for fires in bidirectional tunnels with longitudinal ventilation. In Proceedings of the 16th International Symposium on Aerodynamics, Ventilation and Fire in Tunnels, 15-17 September, Seattle, United States.
[46] Kodur, V., & Naser, M. Z. (2021). Fire hazard in transportation infrastructure: Review, assessment, and mitigation strategies. Frontiers of Structural and Civil Engineering, 15(1), 46–60. doi:10.1007/s11709-020-0676-6.
[47] Kaya, O., & Isikan, M. O. (2019). Investigation of Smoke Evacuation in High-Rise Public Buildings Using Simulation Method. International Journal of Advances in Engineering and Pure Sciences, 31(3), 223–231. doi:10.7240/jeps.512479. (In Turkish).
[48] McGrattan, K., Hostikka, S., Floyd, J., Baum, H., Rehm, R., Mell, W., & McDermott, R. (2010). Fire dynamics simulator (Version 5) technical reference guide. NIST Special Publication, 1018(5), NISTIR 6783.
[49] Nishiki, S. (2013). Numerical study of the effect of water mist spray in tunnel fire using FDS. Proceedings of the 5th Japan/Taiwan/Korea Joint Seminar for Tunnel Fire and Management, November 7, 2015, Tokyo, Japan.
[50] Wang, H. Y., & Sahraoui, H. (2014). Mathematical modeling of pool fire burning rates in a Full-Scale ventilated tunnel. Fire Safety Science, 11, 361–375. doi:10.3801/IAFSS.FSS.11-361.
[51] CFAST (2025). National Institute of Standards and Technology (NIST). The United States Department of Commerce, Middletown, United States. Available online: https://pages.nist.gov/cfast/index.html (accessed on January 2025).
[52] Kelly, A., & Giblin, P. E. (1995). Memorial Tunnel Fire Ventilation Test Program, Comprehensive Test Report. Massachusetts Highway Department, Boston, United States.
[53] Ingason, H., Li, Y. Z., & Lönnermark, A. (2015). Runehamar tunnel fire tests. Fire Safety Journal, 71, 134–149. doi:10.1016/j.firesaf.2014.11.015.
[54] Gaziray (2024). Gaziray Rail System Project. Available online: https://tr.wikipedia.org/wiki/Gaziray (accessed on January 2025).
[55] NFPA. (2023). Standard for Fixed Guideway Transit and Passenger Rail Systems. National Fire Protection Association (NFPA), Massachusetts, United States.
[56] FTA-MA-26-7022-97-1-DOT-VNTSC-FTA-97-7. (1997). Subway Environmental Design Handbook, Volume II, Subway Environment Simulation Computer Program, Version 4, Part 1, User's Manual. Final Report. U.S. Department of Transportation Federal Transit Administration, Washington, United States.
[57] UNE EN 13848-1. (2020). Railway Applications - Track - Track Geometry Quality - Part 1: Characterization of Track Geometry. UNE standards, Brussels, Belgium.
[58] Urban Mass Transportation Administration (1976). Subway Environmental Design Handbook. Volume I: Principles and Applications (2nd Ed.). Technical Report, Urban Mass Transportation Administration, Washington, United States.
[59] Bakke, A. (1965). Safety in Mines Research Establishment (Great Britain), Methane Roof Layers. Ministry of Power, Safety in Mines Research Establishment, Issues 230–239, University of Minnesota, Minneapolis, United States.
[60] Thomas, P. H. (1963). The size of flames from natural fires. Symposium (International) on Combustion, 9(1), 844–859. doi:10.1016/S0082-0784(63)80091-0.
[61] NFPA-502. (2023). Standard for Road Tunnels, Bridges, and Other Limited Access Highways. National Fire Protection Association (NFPA), Massachusetts, United States.
[62] PIARC. (1999). Fire and Smoke Control in Road Tunnels. Technical Committee 5 Road Tunnels (C5), World Road Association, France. Available online: https://www.piarc.org/en/order-library/3854-en-Fire%20and%20Smoke%20Control%20in%20Road%20Tunnels (accessed on January 2025).
[63] ARUP. (2007). Project: Detailed Design Report for Tunnel Ventilation Analysis and Design. Available online: https://www.arup.com/projects/marmaray-tube-crossing (accessed on January 2025).
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
