Downscaling GRACE Data for Improved Groundwater Forecasting Using Artificial Neural Networks
Downloads
Doi: 10.28991/CEJ-2025-011-02-01
Full Text: PDF
[2] Circular/Mississippi. (2018). Agricultural and Forestry Experiment Station, State College, Issues 8-34. Wentworth Press, Pennsylvania, United States.
[3] Zhang, J., Liu, K., & Wang, M. (2021). Downscaling groundwater storage data in China to a 1-km resolution using machine learning methods. Remote Sensing, 13(3), 523. doi:10.3390/rs13030523.
[4] Ghaffari, Z., Easson, G., Yarbrough, L. D., Awawdeh, A. R., Jahan, M. N., & Ellepola, A. (2023). Using Downscaled GRACE Mascon Data to Assess Total Water Storage in Mississippi Alluvial Plain Aquifer. Sensors, 23(14), 6428. doi:10.3390/s23146428.
[5] Konikow, L. F. (2011). Contribution of global groundwater depletion since 1900 to sea-level rise. Geophysical Research Letters, 38(17), L17401. doi:10.1029/2011GL048604.
[6] Wada, Y., Van Beek, L. P. H., Sperna Weiland, F. C., Chao, B. F., Wu, Y. H., & Bierkens, M. F. P. (2012). Past and future contribution of global groundwater depletion to sea-level rise. Geophysical Research Letters, 39(9), L09402. doi:10.1029/2012GL051230.
[7] Noori, R., Maghrebi, M., Mirchi, A., Tang, Q., Bhattarai, R., Sadegh, M., Noury, M., Haghighi, A. T., Klí¸ve, B., & Madani, K. (2021). Anthropogenic depletion of Iran's aquifers. Proceedings of the National Academy of Sciences of the United States of America, 118(25), 2024221118. doi:10.1073/pnas.2024221118.
[8] Seager, R., Tzanova, A., & Nakamura, J. (2009). Drought in the Southeastern United States: Causes, variability over the last millennium, and the potential for future hydroclimate change. Journal of Climate, 22(19), 5021–5045. doi:10.1175/2009JCLI2683.1.
[9] Taylor, C. J., & Alley, W. M. (2001). Ground-water-level monitoring and the importance of long-term water-level data. US Geological Survey, Denver, United States. doi:10.3133/cir1217.
[10] Narany, T. S., Ramli, M. F., Aris, A. Z., Sulaiman, W. N. A., & Fakharian, K. (2014). Spatial assessment of groundwater quality monitoring wells using indicator kriging and risk mapping, Amol-Babol Plain, Iran. Water (Switzerland), 6(1), 68–85. doi:10.3390/w6010068.
[11] Vitale, S. A., & Robbins, G. A. (2016). Characterizing Groundwater Flow in Monitoring Wells by Altering Dissolved Oxygen. Groundwater Monitoring and Remediation, 36(2), 59–67. doi:10.1111/gwmr.12157.
[12] Soeder, D. J. (2015). Adventures in groundwater monitoring: Why has it been so difficult to obtain groundwater data near shale gas wells? Environmental Geosciences, 22(4), 139–148. doi:10.1306/eg.09221515011.
[13] Mogheir, Y., De Lima, J. L. M. P., & Singh, V. P. (2005). Assessment of informativeness of groundwater monitoring in developing regions (Gaza Strip case study). Water Resources Management, 19(6), 737–757. doi:10.1007/s11269-005-6107-6.
[14] Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9), L09607. doi:10.1029/2004GL019920.
[15] Abou Zaki, N., Torabi Haghighi, A., Rossi, P. M., Tourian, M. J., & Klove, B. (2018). Monitoring Groundwater Storage Depletion Using Gravity Recovery and Climate Experiment (GRACE) Data in the Semi-Arid Catchments. Hydrology and Earth System Sciences Discussions, 1-21. doi:10.5194/hess-2018-471.
[16] Frappart, F., & Ramillien, G. (2018). Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sensing, 10(6), 829. doi:10.3390/rs10060829.
[17] Heintzman, L. J., Ghaffari, Z., Awawdeh, A. R., Barrett, D. E., Yarbrough, L. D., Easson, G., Moore, M. T., Locke, M. A., & Yasarer, H. I. (2024). Assessing Differences in Groundwater Hydrology Dynamics Between In Situ Measurements and GRACE-Derived Estimates via Machine Learning: A Test Case of Consequences for Agroecological Relationships Within the Yazoo–Mississippi Delta (USA). Hydrology, 11(11), 186. doi:10.3390/hydrology11110186.
[18] Li, B., Rodell, M., Kumar, S., Beaudoing, H. K., Getirana, A., Zaitchik, B. F., de Goncalves, L. G., Cossetin, C., Bhanja, S., Mukherjee, A., Tian, S., Tangdamrongsub, N., Long, D., Nanteza, J., Lee, J., Policelli, F., Goni, I. B., Daira, D., Bila, M., ... Bettadpur, S. (2019). Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resources Research, 55(9), 7564–7586. doi:10.1029/2018WR024618.
[19] Rateb, A., Scanlon, B. R., Pool, D. R., Sun, A., Zhang, Z., Chen, J., Clark, B., Faunt, C. C., Haugh, C. J., Hill, M., Hobza, C., McGuire, V. L., Reitz, M., Müller Schmied, H., Sutanudjaja, E. H., Swenson, S., Wiese, D., Xia, Y., & Zell, W. (2020). Comparison of Groundwater Storage Changes from GRACE Satellites with Monitoring and Modeling of Major U.S. Aquifers. Water Resources Research, 56(12), e2020WR027556. doi:10.1029/2020WR027556.
[20] Alley, W. M., & Konikow, L. F. (2015). Bringing GRACE Down to Earth. Groundwater, 53(6), 826–829. doi:10.1111/gwat.12379.
[21] Arshad, A., Mirchi, A., Samimi, M., & Ahmad, B. (2022). Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the Irrigated Indus Basin (IIB). Science of the Total Environment, 838, 156044. doi:10.1016/j.scitotenv.2022.156044.
[22] Zuo, J., Xu, J., Chen, Y., & Li, W. (2021). Downscaling simulation of groundwater storage in the Tarim River basin in northwest China based on GRACE data. Physics and Chemistry of the Earth, 123, 103042. doi:10.1016/j.pce.2021.103042.
[23] Fatolazadeh, F., Eshagh, M., & Goí¯ta, K. (2022). New spectro-spatial downscaling approach for terrestrial and groundwater storage variations estimated by GRACE models. Journal of Hydrology, 615, 128635. doi:10.1016/j.jhydrol.2022.128635.
[24] Zhong, D., Wang, S., & Li, J. (2021). Spatiotemporal downscaling of grace total water storage using land surface model outputs. Remote Sensing, 13(5), 1–19. doi:10.3390/rs13050900.
[25] Sahour, H., Sultan, M., Vazifedan, M., Abdelmohsen, K., Karki, S., Yellich, J. A., Gebremichael, E., Alshehri, F., & Elbayoumi, T. M. (2020). Statistical applications to downscale GRACE-derived terrestrial water storage data and to fill temporal gaps. Remote Sensing, 12(3), 533. doi:10.3390/rs12030533.
[26] Seyoum, W. M., Kwon, D., & Milewski, A. M. (2019). Downscaling GRACE TWSA data into high-resolution groundwater level anomaly using machine learning-based models in a glacial aquifer system. Remote Sensing, 11(7), 824. doi:10.3390/rs11070824.
[27] Milewski, A. M., Thomas, M. B., Seyoum, W. M., & Rasmussen, T. C. (2019). Spatial downscaling of GRACE TWSA data to identify spatiotemporal groundwater level trends in the upper Floridian aquifer, Georgia, USA. Remote Sensing, 11(23), 2756. doi:10.3390/rs11232756.
[28] Yin, W., Zhang, G., Liu, F., Zhang, D., Zhang, X., & Chen, S. (2022). Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model. Hydrogeology Journal, 30(3), 947–963. doi:10.1007/s10040-021-02447-4.
[29] Vishwakarma, B. D., Zhang, J., & Sneeuw, N. (2021). Downscaling GRACE total water storage change using partial least squares regression. Scientific Data, 8(1), 95. doi:10.1038/s41597-021-00862-6.
[30] Ali, S., Khorrami, B., Jehanzaib, M., Tariq, A., Ajmal, M., Arshad, A., Shafeeque, M., Dilawar, A., Basit, I., Zhang, L., Sadri, S., Niaz, M. A., Jamil, A., & Khan, S. N. (2023). Spatial Downscaling of GRACE Data Based on XGBoost Model for Improved Understanding of Hydrological Droughts in the Indus Basin Irrigation System (IBIS). Remote Sensing, 15(4), 873. doi:10.3390/rs15040873.
[31] Chen, L., He, Q., Liu, K., Li, J., & Jing, C. (2019). Downscaling of GRACE-derived groundwater storage based on the random forest model. Remote Sensing, 11(24), 2979. doi:10.3390/rs11242979.
[32] Foroumandi, E., Nourani, V., Jeanne Huang, J., & Moradkhani, H. (2023). Drought monitoring by downscaling GRACE-derived terrestrial water storage anomalies: A deep learning approach. Journal of Hydrology, 616, 128838. doi:10.1016/j.jhydrol.2022.128838.
[33] Gorugantula, S. S., & Kambhammettu, B. V. N. P. (2022). Sequential downscaling of GRACE products to map groundwater level changes in Krishna River basin. Hydrological Sciences Journal, 67(12), 1846–1859. doi:10.1080/02626667.2022.2106142.
[34] Wang, Y., Li, C., Cui, Y., Cui, Y., Xu, Y., Hora, T., Zaveri, E., Rodella, A. S., Bai, L., & Long, D. (2024). Spatial downscaling of GRACE-derived groundwater storage changes across diverse climates and human interventions with Random Forests. Journal of Hydrology, 640, 131708. doi:10.1016/j.jhydrol.2024.131708.
[35] Xue, D., Gui, D., Ci, M., Liu, Q., Wei, G., & Liu, Y. (2024). Spatial and temporal downscaling schemes to reconstruct high-resolution GRACE data: A case study in the Tarim River Basin, Northwest China. Science of the Total Environment, 907, 167908. doi:10.1016/j.scitotenv.2023.167908.
[36] Kalu, I., Ndehedehe, C. E., Ferreira, V. G., Janardhanan, S., Currell, M., & Kennard, M. J. (2024). Statistical downscaling of GRACE terrestrial water storage changes based on the Australian Water Outlook model. Scientific Reports, 14(1), 10113. doi:10.1038/s41598-024-60366-2.
[37] Ali, S., Ran, J., Luan, Y., Khorrami, B., Xiao, Y., & Tangdamrongsub, N. (2024). The GWR model-based regional downscaling of GRACE/GRACE-FO derived groundwater storage to investigate local-scale variations in the North China Plain. Science of the Total Environment, 908, 168239. doi:10.1016/j.scitotenv.2023.168239.
[38] Pulla, S. T., Yasarer, H., & Yarbrough, L. D. (2023). GRACE Downscaler: A Framework to Develop and Evaluate Downscaling Models for GRACE. Remote Sensing, 15(9), 2247. doi:10.3390/rs15092247.
[39] Miro, M. E., & Famiglietti, J. S. (2018). Downscaling GRACE remote sensing datasets to high-resolution groundwater storage change maps of California's Central Valley. Remote Sensing, 10(1), 143. doi:10.3390/rs10010143.
[40] Verma, K., & Katpatal, Y. B. (2020). Groundwater Monitoring Using GRACE and GLDAS Data after Downscaling Within Basaltic Aquifer System. Groundwater, 58(1), 143–151. doi:10.1111/gwat.12929.
[41] Kumar, C. (2011). Artificial Neural Network Approach for Reservoir Stage Prediction. Chinese Journal of Mathematical Sciences, 1(1), 1-4.
[42] Buczyñski, S., & Wcislo, M. (2013). Predicting climate-induced changes in groundwater resources on the basis of hydrogeological model research: Case study of the Carpathian flysch belt. Episodes, 36(2), 105–114. doi:10.18814/epiiugs/2013/v36i2/004.
[43] Randall, M. T., Troldborg, L., Refsgaard, J. C., & Kidmose, J. B. (2013). Assessing urban groundwater table response to climate change and increased stormwater infiltration. Geological Survey of Denmark and Greenland Bulletin, 28(28), 33–36. doi:10.34194/geusb.v28.4715.
[44] Park, E., & Parker, J. C. (2008). A simple model for water table fluctuations in response to precipitation. Journal of Hydrology, 356(3–4), 344–349. doi:10.1016/j.jhydrol.2008.04.022.
[45] Killian, C. D., Asquith, W. H., Barlow, J. R. B., Bent, G. C., Kress, W. H., Barlow, P. M., & Schmitz, D. W. (2019). Characterizing groundwater and surface-water interaction using hydrograph-separation techniques and groundwater-level data throughout the Mississippi Delta, USA. Hydrogeology Journal, 27(6), 2167–2179. doi:10.1007/s10040-019-01981-6.
[46] Li, A., & Tsai, F. T. C. (2020). Understanding dynamics of groundwater flows in the Mississippi River Delta. Journal of Hydrology, 583, 124616. doi:10.1016/j.jhydrol.2020.124616.
[47] Shukla, S., Funk, C., Peterson, P., McNally, A., Dinku, T., Barbosa, H., ... & Husak, G. (2017, April). The Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) dataset and its applications in drought risk management. 19th EGU General Assembly, EGU2017, proceedings from the conference, 23-28 April, Vienna, Austria.
[48] Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5(1), 170191. doi:10.1038/sdata.2017.191.
[49] Dawson, C. W., & Wilby, R. L. (2001). Hydrological modelling using artificial neural networks. Progress in Physical Geography, 25(1), 80–108. doi:10.1177/030913330102500104.
[50] Alibakshi, A. (2018). Strategies to develop robust neural network models: Prediction of flash point as a case study. Analytica Chimica Acta, 1026, 69–76. doi:10.1016/j.aca.2018.05.015.
[51] Avula, N. V. S., Veesam, S. K., Behera, S., & Balasubramanian, S. (2022). Building robust machine learning models for small chemical science data: the case of shear viscosity of fluids. Machine Learning: Science and Technology, 3(4), 45032. doi:10.1088/2632-2153/acac01.
[52] Zanganeh, M., & Mirabedini, S. J. (2015). Comparing Imperialist Competitive Algorithm with Backpropagation Algorithms for Training Feedforward Neural Network. Journal of Mathematics and Computer Science, 14(03), 193–204. doi:10.22436/jmcs.014.03.02.
[53] Najjar, Y. (1999). Quick Manual for the Use of ANN program TRSEQ1. Department of Civil Engineering, Kansas State University, Manhattan, United States.
[54] Altmann, A., Toloşi, L., Sander, O., & Lengauer, T. (2010). Permutation importance: A corrected feature importance measure. Bioinformatics, 26(10), 1340–1347. doi:10.1093/bioinformatics/btq134.
[55] US Department of Commerce. (2023). Mississippi River Flood History 1543-Present. National Weather Service. National Weather Service. National Oceanic and Atmospheric Administration, US Department of Commerce, New Orleans, United States. Accessed online: https://www.weather.gov/lix/ms_flood_history (accessed on January 2025).
[56] National Integrated Drought Information System. (2025). Historical Data and Conditions. 1315 East-West Highway Silver Spring, United States. Available online: https://www.drought.gov/historical-information (accessed on January 2025).
[57] McGuire, V. L., Seanor, R. C., Asquith, W. H., Nottmeier, A. M., David, S. C., Tollett, R. W., ... & Strauch, K. R. (2020). Datasets used to map the potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2018. U. S. geological Survey Data Release, 12201 Sunrise Valley Drive Reston, United States.
[58] McGuire, V. L., Seanor, R. C., Asquith, W. H., Strauch, K. R., Nottmeier, A. M., Thomas, J. C., Tollett, R. W., & Kress, W. H. (2021a). Altitude of the potentiometric surface in the Mississippi River Valley alluvial aquifer, spring 2020. U. S. geological Survey Data Release, 12201 Sunrise Valley Drive Reston, United States.
[59] McGuire, V. L., Seanor, R. C., Asquith, W. H., Nottmeier, A. M., Smith, D. C., Tollett, R. W., Kress, W. H., & Strauch, K. R., (2020). Altitude of the potentiometric surface in the Mississippi River Valley alluvial aquifer, spring 2018. U. S. geological Survey Data Release, 12201 Sunrise Valley Drive Reston, United States.
[60] McGuire, V. L., Seanor, R. C., Asquith, W. H., Kress, W., & Strauch, K. R. (2019). Potentiometric surface of the Mississippi River Valley alluvial aquifer, spring 2016 (No. 3439). U. S. geological Survey Data Release, 12201 Sunrise Valley Drive Reston, United States.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
