On the Impact of Lacing Reinforcement Arrangement on Reinforced Concrete Deep Beams Performance
Downloads
Doi: 10.28991/CEJ-2025-011-02-019
Full Text: PDF
[2] Yang, K. H., & Ashour, A. (2007). Tests on reinforced concrete deep beams. Concrete (London), 41(1), 42–44. doi:10.14359/10558.
[3] Saleh, M., AlHamaydeh, M., & Zakaria, M. (2023). Finite element analysis of reinforced concrete deep beams with square web openings using damage plasticity model. Engineering Structures, 278, 115496. doi:10.1016/j.engstruct.2022.115496.
[4] Allawi, A. A., Oukaili, N. K., & Jasim, W. A. (2021). Strength compensation of deep beams with large web openings using carbon fiber–reinforced polymer sheets. Advances in Structural Engineering, 24(1), 165–182. doi:10.1177/1369433220947195.
[5] M. Mhalhal, J., S. Al-Gasham, T., & A. Jabir, H. (2018). New Technique to Enhance the Shear Performance of RC Deep Beams Using Mild Steel Plates. International Journal of Engineering & Technology, 7(4.20), 86. doi:10.14419/ijet.v7i4.20.25854.
[6] Woodson, S. C. (1992). Lacing versus stirrups: An experimental study of shear reinforcement in blast-resistant structures. Waterways Experiment Station, Structures Laboratory, US Army Corps of Engineers, Washington, United States.
[7] Fan, S., Zhang, Y., & Tan, K. H. (2022). Fire behaviour of deep beams under unsymmetrical loading. Engineering Structures, 250, 113419. doi:10.1016/j.engstruct.2021.113419.
[8] Campione, G., & Minafò, G. (2012). Behaviour of concrete deep beams with openings and low shear span-to-depth ratio. Engineering Structures, 41, 294-306. doi:10.1016/j.engstruct.2012.03.055.
[9] Fan, S., Tan, K. H., & Nguyen, M. P. (2018). Numerical model to determine shear capacity of reinforced concrete deep beams exposed to fire. Fib Symposium, 1410–1419. doi:10.1007/978-3-319-59471-2_162.
[10] Kareem, A., & Mohammed, S. D. (2023). The Experimental and Theoretical Effect of Fire on the Structural Behavior of Laced Reinforced Concrete Deep Beams. Engineering, Technology and Applied Science Research, 13(5), 11795–11800. doi:10.48084/etasr.6272.
[11] Ali Al-Tameemi, S. K., Al-hasany, E. G., Mohammad, H. K., Jabir, H. A., Ibrahim, T. H., Allawi, A. A., & El-Zohairy, A. (2024). Simulation and design model for reinforced concrete slabs with lacing systems. Advances in Structural Engineering, 27(5), 871–892. doi:10.1177/13694332241237576.
[12] Al-Ghrery, K., Al-Mahaidi, R., Kalfat, R., Oukaili, N., & Al-Mosawe, A. (2021). Experimental Investigation of Curved-Soffit RC Bridge Girders Strengthened in Flexure Using CFRP Composites. Journal of Bridge Engineering, 26(4), 04021009. doi:10.1061/(asce)be.1943-5592.0001691.
[13] Anandavalli, N., Lakshmanan, N., Iyer, N. R., Prakash, A., Ramanjaneyulu, K., Rajasankar, J., & Rajagopal, C. (2012). Behaviour of a blast loaded laced reinforced concrete structure. Defence Science Journal, 62(5), 284–289. doi:10.14429/dsj.62.820.
[14] Anandavalli, N., Lakshmanan, N., Prakash, A., Rajasankar, J., & Iyer, N. R. (2015). Numerical Investigations on a Blast Loaded Laced Reinforced Concrete Structure using an Equivalent Constitutive Property. Journal of The Institution of Engineers (India): Series A, 96(4), 311–318. doi:10.1007/s40030-015-0139-6.
[15] Anandavalli, N., Lakshmanan, N., Knight, G. S., Iyer, N. R., & Rajasankar, J. (2012). Performance of laced steel–concrete composite (LSCC) beams under monotonic loading. Engineering Structures, 41, 177-185. doi:10.1016/j.engstruct.2012.03.033.
[16] Park, R., & Ruitong, D. (1988). Ductility of Doubly Reinforced Concrete Beam Sections. ACI Structural Journal, 85(2), 217–225. doi:10.14359/2760.
[17] Ismael, T. M., & Mohammed, S. D. (2021). Structural performance of fiber-reinforced lightweight concrete slabs with expanded clay aggregate. Materials Today: Proceedings, 42(4), 2901–2908. doi:10.1016/j.matpr.2020.12.746.
[18] Adnan Hadi, M., & Mohammed, S. D. (2021). Improving torsional - Flexural resistance of concrete beams reinforced by hooked and straight steel fibers. Materials Today: Proceedings, 42, 3072–3082. doi:10.1016/j.matpr.2020.12.1046.
[19] Poongodi, K., Murthi, P., & Gobinath, R. (2020). Evaluation of ductility index enhancement level of banana fibre reinforced lightweight self-compacting concrete beam. Materials Today: Proceedings, 39(1), 131–136. doi:10.1016/j.matpr.2020.06.397.
[20] Seleem, M. H., Megahed, F. A., Badawy, A. A. M., & Sharaky, I. A. (2023). Performance of NSM and EB methods on the flexural capacity of the RC beams strengthened with reinforced HSC layers. Structures, 56, 104950. doi:10.1016/j.istruc.2023.104950
[21] Maghsoudi, A. A., & Akbarzadeh Bengar, H. (2006). Flexural ductility of HSC members. Structural Engineering and Mechanics, 24(2), 195–212. doi:10.12989/sem.2006.24.2.195.
[22] Al-Gasham, T. S., Mhalhal, J. M., & Abid, S. R. (2020). Flexural Behavior of Laced Reinforced Concrete Moderately Deep Beams. Case Studies in Construction Materials, 13, e00363. doi:10.1016/j.cscm.2020.e00363.
[23] Lakshmanan, N. (2008). Laced reinforced concrete construction technique for blast resistant design of structures. Proceedings of the Sixth Structural Engineering Convention, 18-20 December, 2008, Chennai, India.
[24] Allawi, A. A., & Jabir, H. A. (2016). Experimental Behavior of Laced Reinforced Concrete One Way Slab under Static Load. Journal of Engineering, 22(5), 42–59. doi:10.31026/j.eng.2016.05.04.
[25] Hallawi, A. F., & Al-Ahmed, A. H. A. (2019). Enhancing the Behavior of One-Way Reinforced Concrete Slabs by Using Laced Reinforcement. Civil Engineering Journal (Iran), 5(3), 718–728. doi:10.28991/cej-2019-03091282.
[26] Abdullah, A. I., & Al-Khazraji, S. D. M. (2019). Structural Behavior of High Strength Laced Reinforced Concrete One Way Slab Exposed to Fire Flame. Civil Engineering Journal (Iran), 5(12), 2747–2761. doi:10.28991/cej-2019-03091446.
[27] Abdullah, M., Nakamura, H., & Miura, T. (2024). Experimental investigation on influence of vertical stirrup legs to shear failure behavior in RC beams. Developments in the Built Environment, 18(100451). doi:10.1016/j.dibe.2024.100451.
[28] Johnson, B. G. C., Ramasamy, M., & Narayanan, A. (2024). Experimental study and assessment of the structural performance of laced reinforced concrete beams against reverse cyclic loading. Matéria (Rio de Janeiro), 29(1), e20240001. doi:10.1590/1517-7076-rmat-2024-0001.
[29] Bello, B.R., & Dela Cruz, O.G. (2024). Shear and Flexural Performance of Reinforced Concrete Beams with Modified Shear Reinforcement: A Literature Review. Proceedings of the International Conference on Geosynthetics and Environmental Engineering, ICGEE 2023, Lecture Notes in Civil Engineering, 374, Springer, Singapore. doi:10.1007/978-981-99-4229-9_9.
[30] Bello, B. R., Dela Cruz, O. G., Muhi, M. M., & Guades, E. J. (2024). Enhancing the Flexural Capacity of Reinforced Concrete Beam by Using Modified Shear Reinforcement. Civil Engineering Journal (Iran), 10(6), 1720–1741. doi:10.28991/CEJ-2024-010-06-02.
[31] Iraqi Specification No. 5. (2019). Portland Cement. Central Agency for Standardization and Quality Control, Baghdad, Iraq.
[32] Iraqi Specification No. 45. (1984). Aggregate from Natural Sources for Concrete and Construction. Central Organization for Standardization and Quality Control, Baghdad, Iraq.
[33] ASTM C1240-20. (2020). Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/C1240-20.
[34] ASTM C494/C494M-17. (2020). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-17.
[35] ASTM A615/A615M-05a. (2017). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615_A0615M-05A.
[36] EFNARC. (2005). European Guidelines for Self-Compacting Concrete (SCC). EFNARC, FLUMS, Switzerland.
[37] Coronado, C. A., & Lopez, M. M. (2006). Sensitivity analysis of reinforced concrete beams strengthened with FRP laminates. Cement and Concrete Composites, 28(1), 102–114. doi:10.1016/j.cemconcomp.2005.07.005.
[38] Kent, D. C., & Park, R. (1971). Flexural Members with Confined Concrete. Journal of the Structural Division, 97(7), 1969–1990. doi:10.1061/jsdeag.0002957.
[39] Wang, T., & Hsu, T. T. C. (2001). Nonlinear finite element analysis of concrete structures using new constitutive models. Computers & Structures, 79(32), 2781–2791. doi:10.1016/S0045-7949(01)00157-2.
[40] Soboyejo, W. (2002). Mechanical properties of engineered materials. CRC Press, New York, United States. doi:10.1201/9780203910399.
[41] Aslani, F., & Samali, B. (2014). Flexural toughness characteristics of self-compacting concrete incorporating steel and polypropylene fibres. Australian Journal of Structural Engineering, 15(3), 269–286. doi:10.7158/S13-011.2014.15.3.
[42] Allawi, A. A., Shubber, A. N., Al Gharawi, M., El-Zohairy, A., Ibrahim, T. H., Al-Ahmed, A. H. A., & Arafa, I. T. (2023). Enhancement of RC T-beams toughness using laced stirrups reinforcement for blast response predictions. Structural Concrete, 24(3), 3839–3856. doi:10.1002/suco.202200894.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.