Urban-Rural Differences in Electric Vehicle Adoption Intentions: Integrated TAM, TPB, UTAUT with Environmental Identity
Downloads
Doi: 10.28991/CEJ-2025-011-05-010
Full Text: PDF
[2] Rangaraju, S., De Vroey, L., Messagie, M., Mertens, J., & Van Mierlo, J. (2015). Impacts of electricity mix, charging profile, and driving behavior on the emissions performance of battery electric vehicles: A Belgian case study. Applied Energy, 148, 496–505. doi:10.1016/j.apenergy.2015.01.121.
[3] Hema, R., & Venkatarangan, M. J. (2022). Adoption of EV: Landscape of EV and opportunities for India. Measurement: Sensors, 24, 100596. doi:10.1016/j.measen.2022.100596.
[4] Janhuaton, T., Ratanavaraha, V., & Jomnonkwao, S. (2024). Forecasting Thailand's Transportation CO2 Emissions: A Comparison among Artificial Intelligent Models. Forecasting, 6(2), 462–484. doi:10.3390/forecast6020026.
[5] Singh, V., Singh, V., & Vaibhav, S. (2020). A review and simple meta-analysis of factors influencing adoption of electric vehicles. Transportation Research Part D: Transport and Environment, 86. doi:10.1016/j.trd.2020.102436.
[6] Li, F., Ou, R., Xiao, X., Zhou, K., Xie, W., Ma, D., Liu, K., & Song, Z. (2019). Regional comparison of electric vehicle adoption and emission reduction effects in China. Resources, Conservation and Recycling, 149, 714–726. doi:10.1016/j.resconrec.2019.01.038.
[7] Huck, W. (2022). Sustainable Development Goals. Nomos, Glashütte, Germany. doi:10.5771/9783748902065.
[8] Limpasirisuwan, N., Champahom, T., Jomnonkwao, S., & Ratanavaraha, V. (2024). Promoting Sustainable Transportation: Factors Influencing Battery Electric Vehicle Adoption Across Age Groups in Thailand. Sustainability (Switzerland), 16(21), 9273. doi:10.3390/su16219273.
[9] Peng, R., Tang, J. H. C. G., Yang, X., Meng, M., Zhang, J., & Zhuge, C. (2024). Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States. Applied Energy, 355. doi:10.1016/j.apenergy.2023.122327.
[10] National Strategy Secretariat Office. (2018). National Strategic Plan 2018-2037. National Strategy Secretariat Office, Office of Foreign Affairs, Bangkok, Thailand. Available online: https://oia.coj.go.th/th/content/category/detail/id/8/cid/5885/iid/93993 (accessed on April 2025). (In Thai).
[11] Paudel, A., Pinthurat, W., & Marungsri, B. (2023). Impact of Large-Scale Electric Vehicles' Promotion in Thailand Considering Energy Mix, Peak Load, and Greenhouse Gas Emissions. Smart Cities, 6(5), 2619–2638. doi:10.3390/smartcities6050118.
[12] Chaianong, A., Pharino, C., Langkau, S., Limthongkul, P., & Kunanusont, N. (2024). Pathways for enhancing sustainable mobility in emerging markets: Cost-benefit analysis and policy recommendations for recycling of electric-vehicle batteries in Thailand. Sustainable Production and Consumption, 47, 1–16. doi:10.1016/j.spc.2024.03.025.
[13] Manutworakit, P., & Choocharukul, K. (2022). Factors Influencing Battery Electric Vehicle Adoption in Thailand”Expanding the Unified Theory of Acceptance and Use of Technology's Variables. Sustainability (Switzerland), 14(14), 8482. doi:10.3390/su14148482.
[14] Ahmad, S., Chaveeesuk, S., & Chaiyasoonthorn, W. (2024). The adoption of electric vehicle in Thailand with the moderating role of charging infrastructure: an extension of a UTAUT. International Journal of Sustainable Energy, 43(1), 2387908. doi:10.1080/14786451.2024.2387908.
[15] Winikoff, J. B. (2024). Economic specialization, infrastructure, and rural electric vehicle adoption. Energy Policy, 195. doi:10.1016/j.enpol.2024.114380.
[16] Min, Y., & Mayfield, E. (2023). Rooftop solar, electric vehicle, and heat pump adoption in rural areas in the United States. Energy Research & Social Science, 105. doi:10.1016/j.erss.2023.103292.
[17] Vazifeh, M. M., Zhang, H., Santi, P., & Ratti, C. (2019). Optimizing the deployment of electric vehicle charging stations using pervasive mobility data. Transportation Research Part A: Policy and Practice, 121, 75–91. doi:10.1016/j.tra.2019.01.002.
[18] Liu, X., Sun, X., Zheng, H., & Huang, D. (2021). Do policy incentives drive electric vehicle adoption? Evidence from China. Transportation Research Part A: Policy and Practice, 150, 49–62. doi:10.1016/j.tra.2021.05.013.
[19] Möring-Martínez, G., Senzeybek, M., & Jochem, P. (2024). Clustering the European Union electric vehicle markets: A scenario analysis until 2035. Transportation Research Part D: Transport and Environment, 135. doi:10.1016/j.trd.2024.104372.
[20] Jiang, H., Xu, H., Liu, Q., Ma, L., & Song, J. (2024). An urban planning perspective on enhancing electric vehicle (EV) adoption: Evidence from Beijing. Travel Behaviour and Society, 34. doi:10.1016/j.tbs.2023.100712.
[21] Khammassi, E., Rehimi, F., Halawani, A. T. M., & Kalboussi, A. (2024). Energy transition policy via electric vehicles adoption in the developing world: Tunisia as a case study. Energy Policy, 185. doi:10.1016/j.enpol.2023.113927.
[22] Ferguson, M., Mohamed, M., Higgins, C. D., Abotalebi, E., & Kanaroglou, P. (2018). How open are Canadian households to electric vehicles? A national latent class choice analysis with willingness-to-pay and metropolitan characterization. Transportation Research Part D: Transport and Environment, 58, 208–224. doi:10.1016/j.trd.2017.12.006.
[23] Ramesan, S., Kumar, P., & Garg, S. K. (2022). Analyzing the enablers to overcome the challenges in the adoption of electric vehicles in Delhi NCR. Case Studies on Transport Policy, 10(3), 1640–1650. doi:10.1016/j.cstp.2022.06.003.
[24] Pamidimukkala, A., Kermanshachi, S., Rosenberger, J. M., & Hladik, G. (2024). Barriers and motivators to the adoption of electric vehicles: A global review. Green Energy and Intelligent Transportation, 3(2), 100153. doi:10.1016/j.geits.2024.100153.
[25] Champahom, T., Se, C., Laphrom, W., Jomnonkwao, S., Karoonsoontawong, A., & Ratanavaraha, V. (2024). Modeling User Intentions for Electric Vehicle Adoption in Thailand: Incorporating Multilayer Preference Heterogeneity. Logistics, 8(3), 83. doi:10.3390/logistics8030083.
[26] Zhang, L., Tong, H., Liang, Y., & Qin, Q. (2023). Consumer purchase intention of new energy vehicles with an extended technology acceptance model: The role of attitudinal ambivalence. Transportation Research Part A: Policy and Practice, 174. doi:10.1016/j.tra.2023.103742.
[27] Kumar, S., & Chauhan, V. (2024). Empowering Indian consumers to embrace electric vehicles through the unified theory of acceptance and use of technology. The Scientific Temper, 15(03), 2819–2832. doi:10.58414/scientifictemper.2024.15.3.52.
[28] Gunawan, I., Redi, A. A. N. P., Santosa, A. A., Maghfiroh, M. F. N., Pandyaswargo, A. H., & Kurniawan, A. C. (2022). Determinants of Customer Intentions to Use Electric Vehicle in Indonesia: An Integrated Model Analysis. Sustainability (Switzerland), 14(4), 1972. doi:10.3390/su14041972.
[29] Singh, D., Paul, U. K., & Pandey, N. (2023). Does electric vehicle adoption (EVA) contribute to clean energy? Bibliometric insights and future research agenda. Cleaner and Responsible Consumption, 8. doi:10.1016/j.clrc.2022.100099.
[30] Li, L., Wang, Z., & Xie, X. (2022). From government to market? A discrete choice analysis of policy instruments for electric vehicle adoption. Transportation Research Part A: Policy and Practice, 160, 143–159. doi:10.1016/j.tra.2022.04.004.
[31] Nayum, A., & Thí¸gersen, J. (2022). I did my bit! The impact of electric vehicle adoption on compensatory beliefs and norms in Norway. Energy Research & Social Science, 89, 102541. doi:10.1016/j.erss.2022.102541.
[32] Singh, H., Singh, V., Singh, T., & Higueras-Castillo, E. (2023). Electric vehicle adoption intention in the Himalayan region using UTAUT2 – NAM model. Case Studies on Transport Policy, 11. doi:10.1016/j.cstp.2022.100946.
[33] Chonsalasin, D., Champahom, T., Jomnonkwao, S., Karoonsoontawong, A., Runkawee, N., & Ratanavaraha, V. (2024). Exploring the Influence of Thai Government Policy Perceptions on Electric Vehicle Adoption: A Measurement Model and Empirical Analysis. Smart Cities, 7(4), 2258–2282. doi:10.3390/smartcities7040089.
[34] Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications, New York, United States.
[35] Zhang, B. S., Ali, K., & Kanesan, T. (2022). A model of extended technology acceptance for behavioral intention toward EVs with gender as a moderator. Frontiers in Psychology, 13, 1080414. doi:10.3389/fpsyg.2022.1080414.
[36] Higueras-Castillo, E., Singh, V., Singh, V., & Liébana-Cabanillas, F. (2023). Factors affecting adoption intention of electric vehicle: a cross-cultural study. Environment, Development and Sustainability, 26(11), 29293–29329. doi:10.1007/s10668-023-03865-y.
[37] Prakhar, P., Jaiswal, R., Gupta, S., & Gupta, S. K. (2024). Decoding tourist perceptions and behavioral intentions to use electric vehicles for sustainable tourism with the lens of technology continuance theory. International Journal of Tourism Cities, 33. doi:10.1108/IJTC-01-2024-0033.
[38] Aruldoss, A., Berube Kowalski, K., Travis, M. L., & Parayitam, S. (2022). The relationship between work–life balance and job satisfaction: moderating role of training and development and work environment. Journal of Advances in Management Research, 19(2), 240–271. doi:10.1108/JAMR-01-2021-0002.
[39] Abbasi, H. A., Johl, S. K., Shaari, Z. B. H., Moughal, W., Mazhar, M., Musarat, M. A., Rafiq, W., Farooqi, A. S., & Borovkov, A. (2021). Consumer motivation by using unified theory of acceptance and use of technology towards electric vehicles. Sustainability (Switzerland), 13(21), 12177. doi:10.3390/su132112177.
[40] Pamidimukkala, A., Kermanshachi, S., Rosenberger, J. M., & Hladik, G. (2023). Evaluation of barriers to electric vehicle adoption: A study of technological, environmental, financial, and infrastructure factors. Transportation Research Interdisciplinary Perspectives, 22. doi:10.1016/j.trip.2023.100962.
[41] Limon, M. H., Debnath, B., & Bari, A. B. M. M. (2023). Exploration of the drivers influencing the growth of hybrid electric vehicle adoption in the emerging economies: Implications towards sustainability and low-carbon economy. Sustainable Operations and Computers, 4, 76–87. doi:10.1016/j.susoc.2023.04.002.
[42] Maybury, L., Corcoran, P., & Cipcigan, L. (2022). Mathematical modelling of electric vehicle adoption: A systematic literature review. Transportation Research Part D: Transport and Environment, 107. doi:10.1016/j.trd.2022.103278.
[43] Kester, J., Sovacool, B. K., Noel, L., & Zarazua de Rubens, G. (2020). Rethinking the spatiality of Nordic electric vehicles and their popularity in urban environments: Moving beyond the city? Journal of Transport Geography, 82. doi:10.1016/j.jtrangeo.2019.102557.
[44] Wang, D., Ozden, M., & Tsang, Y. P. (2023). The impact of facilitating conditions on electric vehicle adoption intention in China: An integrated unified theory of acceptance and use of technology model. International Journal of Engineering Business Management, 15. doi:10.1177/18479790231224715.
[45] Alyamani, R., Pappelis, D., & Kamargianni, M. (2024). Modelling the determinants of electrical vehicles adoption in Riyadh, Saudi Arabia. Energy Policy, 188. doi:10.1016/j.enpol.2024.114072.
[46] Bhat, F. A., Seth, Y., & Verma, A. (2024). Motivators and barriers to the widespread adoption of electric four-wheelers in India – A discrete choice analysis of potential electric four-wheeler buyers. Travel Behaviour and Society, 35. doi:10.1016/j.tbs.2024.100748.
[47] Li, L., Wang, Z., Gong, Y., & Liu, S. (2022). Self-image motives for electric vehicle adoption: Evidence from China. Transportation Research Part D: Transport and Environment, 109. doi:10.1016/j.trd.2022.103383.
[48] Rye, J., & Sintov, N. D. (2024). Predictors of electric vehicle adoption intent in rideshare drivers relative to commuters. Transportation Research Part A: Policy and Practice, 179. doi:10.1016/j.tra.2023.103943.
[49] Hull, C., Giliomee, J. H., Visser, M., & Booysen, M. J. (2024). Electric vehicle adoption intention among paratransit owners and drivers in South Africa. Transport Policy, 146, 137–149. doi:10.1016/j.tranpol.2023.11.015.
[50] Jain, N. K., Bhaskar, K., & Jain, S. (2022). What drives adoption intention of electric vehicles in India? An integrated UTAUT model with environmental concerns, perceived risk and government support. Research in Transportation Business & Management, 42. doi:10.1016/j.rtbm.2021.100730.
[51] Qian, X., & Gkritza, K. (2024). Spatial and temporal variance in public perception of electric vehicles: A comparative analysis of adoption pioneers and laggards using twitter data. Transport Policy, 149, 150–162. doi:10.1016/j.tranpol.2024.02.011.
[52] Morton, C., Lovelace, R., & Anable, J. (2017). Exploring the effect of local transport policies on the adoption of low emission vehicles: Evidence from the London Congestion Charge and Hybrid Electric Vehicles. Transport Policy, 60, 34–46. doi:10.1016/j.tranpol.2017.08.007.
[53] Zhu, Y., Choma, E. F., Wang, K., & Wang, H. (2023). Electric vehicle adoption delivers public health and environmental benefits. Eco-Environment and Health, 2(4), 193–194. doi:10.1016/j.eehl.2023.07.008.
[54] Chakraborty, D., Lee, J. H., Chakraborty, A., & Tal, G. (2023). To adopt rooftop solar or not along with electric vehicles? Exploring the factors influencing Co-adoption decisions among electric vehicle owners in California. Electricity Journal, 36(7), 107315. doi:10.1016/j.tej.2023.107315.
[55] Heymann, F., Miranda, V., Soares, F. J., Duenas, P., Perez Arriaga, I., & Prata, R. (2019). Orchestrating incentive designs to reduce adverse system-level effects of large-scale EV/PV adoption – The case of Portugal. Applied Energy, 256. doi:10.1016/j.apenergy.2019.113931.
[56] Hakam, D. F., & Jumayla, S. (2024). Electric vehicle adoption in Indonesia: Lesson learned from developed and developing countries. Sustainable Futures, 8, 100348. doi:10.1016/j.sftr.2024.100348.
[57] Balla, S. N., Pani, A., Sahu, P. K., & González-Feliu, J. (2023). Examining shifts in public discourse on electric mobility adoption through Twitter data. Transportation Research Part D: Transport and Environment, 121. doi:10.1016/j.trd.2023.103843.
[58] Rahman, M. M., Lesch, M. F., Horrey, W. J., & Strawderman, L. (2017). Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems. Accident Analysis and Prevention, 108, 361–373. doi:10.1016/j.aap.2017.09.011.
[59] Cai, L., Yuen, K. F., Xie, D., Fang, M., & Wang, X. (2021). Consumer's usage of logistics technologies: Integration of habit into the unified theory of acceptance and use of technology. Technology in Society, 67. doi:10.1016/j.techsoc.2021.101789.
[60] Roemer, E., & Henseler, J. (2022). The dynamics of electric vehicle acceptance in corporate fleets: Evidence from Germany. Technology in Society, 68. doi:10.1016/j.techsoc.2022.101938.
[61] Singh, V., Singh, H., Dhiman, B., Kumar, N., & Singh, T. (2023). Analyzing bibliometric and thematic patterns in the transition to sustainable transportation: Uncovering the influences on electric vehicle adoption. Research in Transportation Business and Management, 50. doi:10.1016/j.rtbm.2023.101033.
[62] Plötz, P., Schneider, U., Globisch, J., & Dütschke, E. (2014). Who will buy electric vehicles? Identifying early adopters in Germany. Transportation Research Part A: Policy and Practice, 67, 96–109. doi:10.1016/j.tra.2014.06.006.
[63] Egbue, O., Long, S., & Samaranayake, V. A. (2017). Mass deployment of sustainable transportation: evaluation of factors that influence electric vehicle adoption. Clean Technologies and Environmental Policy, 19(7), 1927–1939. doi:10.1007/s10098-017-1375-4.
[64] Pamidimukkala, A., Kermanshachi, S., Rosenberger, J. M., & Hladik, G. (n.d.). Adoption of electric vehicles: An empirical study of consumers' intentions. Transport Economics and Management, 2, 359–366. doi:10.1016/j.team.2024.11.001.
[65] Wattana, B., & Wattana, S. (2022). Implications of electric vehicle promotion policy on the road transport and electricity sectors for Thailand. Energy Strategy Reviews, 42. doi:10.1016/j.esr.2022.100901.
[66] Onat, N. C., & Kucukvar, M. (2022). A systematic review on sustainability assessment of electric vehicles: Knowledge gaps and future perspectives. Environmental Impact Assessment Review, 97. doi:10.1016/j.eiar.2022.106867.
[67] Ajanovic, A., & Haas, R. (2016). Dissemination of electric vehicles in urban areas: Major factors for success. Energy, 115, 1451–1458. doi:10.1016/j.energy.2016.05.040.
[68] Choi, H., Shin, J., & Woo, J. R. (2018). Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact. Energy Policy, 121, 13–24. doi:10.1016/j.enpol.2018.06.013.
[69] Bauer, G. (2018). The impact of battery electric vehicles on vehicle purchase and driving behavior in Norway. Transportation Research Part D: Transport and Environment, 58, 239–258. doi:10.1016/j.trd.2017.12.011.
[70] Bjerkan, K. Y., Ní¸rbech, T. E., & Nordtí¸mme, M. E. (2016). Incentives for promoting Battery Electric Vehicle (BEV) adoption in Norway. Transportation Research Part D: Transport and Environment, 43, 169–180. doi:10.1016/j.trd.2015.12.002.
[71] Chhikara, R., Garg, R., Chhabra, S., Karnatak, U., & Agrawal, G. (2021). Factors affecting adoption of electric vehicles in India: An exploratory study. Transportation Research Part D: Transport and Environment, 100. doi:10.1016/j.trd.2021.103084.
[72] Kyriakakis, N. A., Stamadianos, T., Marinaki, M., & Marinakis, Y. (2022). The electric vehicle routing problem with drones: An energy minimization approach for aerial deliveries. Cleaner Logistics and Supply Chain, 4. doi:10.1016/j.clscn.2022.100041.
[73] Mashahadi, F., Mahmod, R., & Saidon, J. (2023). Development in Electric Vehicle Intention and Adoption: Integrating the Extended Unified Theory of Acceptance and Use of Technology (UTAUT) and Religiosity. Information Management and Business Review, 15(3(I)), 173–182. doi:10.22610/imbr.v15i3(i).3527.
[74] Filippini, M., Kumar, N., & Srinivasan, S. (2021). Nudging adoption of electric vehicles: Evidence from an information-based intervention in Nepal. Transportation Research Part D: Transport and Environment, 97. doi:10.1016/j.trd.2021.102951.
[75] Hair Jr, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate Data Analysis (7th edition). Pearson Prentice Hall, New Jersey, United States.
[76] Lopez-Arboleda, E., Sarmiento, A. T., & Cardenas, L. M. (2023). Policy assessment for electromobility promotion in Colombia: A system dynamics approach. Transportation Research Part D: Transport and Environment, 121. doi:10.1016/j.trd.2023.103799.
[77] Luo, Q., Yin, Y., Chen, P., Zhan, Z., & Saigal, R. (2022). Dynamic subsidies for synergistic development of charging infrastructure and electric vehicle adoption. Transport Policy, 129, 117–136. doi:10.1016/j.tranpol.2022.09.028.
[78] Yildiz, B., Çiğdem, Šž., & Meidute-Kavaliauskiene, I. (2024). Sustainable Mobility and Electric Vehicle Adoption: a Study on the Impact of Perceived Benefits and Risks. Transport, 39(2), 129–145. doi:10.3846/transport.2024.22413.
[79] Barbarossa, C., De Pelsmacker, P., & Moons, I. (2017). Personal Values, Green Self-identity and Electric Car Adoption. Ecological Economics, 140, 190–200. doi:10.1016/j.ecolecon.2017.05.015.
[80] Higgins, C. D., Mohamed, M., & Ferguson, M. R. (2017). Size matters: How vehicle body type affects consumer preferences for electric vehicles. Transportation Research Part A: Policy and Practice, 100, 182–201. doi:10.1016/j.tra.2017.04.014.
[81] Munshi, T., Dhar, S., & Painuly, J. (2022). Understanding barriers to electric vehicle adoption for personal mobility: A case study of middle income in-service residents in Hyderabad city, India. Energy Policy, 167. doi:10.1016/j.enpol.2022.112956.
[82] Li, G., Walls, W. D., & Zheng, X. (2023). Differential license plate pricing and electric vehicle adoption in Shanghai, China. Transportation Research Part A: Policy and Practice, 172. doi:10.1016/j.tra.2023.103672.
[83] Qahtan, M. H., Mohammed, E. A., & Ali, A. J. (2022). Charging Station of Electric Vehicle Based on IoT: A Review. OALib, 9(6), 1–22. doi:10.4236/oalib.1108791.
[84] Qian, Y. M., Ching, T. H., & Abidin, Z. M. B. Z. (2022). Mobile Application System for chargEV Charging Stations. 2022 IEEE 2nd International Conference on Mobile Networks and Wireless Communications (ICMNWC), 1–5. doi:10.1109/icmnwc56175.2022.10031669.
[85] Figenbaum, E., Wangsness, P. B., Amundsen, A. H., & Milch, V. (2022). Empirical Analysis of the User Needs and the Business Models in the Norwegian Charging Infrastructure Ecosystem. World Electric Vehicle Journal, 13(10), 185. doi:10.3390/wevj13100185.
[86] Rejali, S., Aghabayk, K., Mohammadi, A., & Shiwakoti, N. (2024). Evaluating public a priori acceptance of autonomous modular transit using an extended unified theory of acceptance and use of technology model. Journal of Public Transportation, 26. doi:10.1016/j.jpubtr.2024.100081.
[87] Liu, Z., Borlaug, B., Meintz, A., Neuman, C., Wood, E., & Bennett, J. (2023). Data-driven method for electric vehicle charging demand analysis: Case study in Virginia. Transportation Research Part D: Transport and Environment, 125. doi:10.1016/j.trd.2023.103994.
[88] Tu, J. C., & Yang, C. (2019). Key factors influencing consumers' purchase of electric vehicles. Sustainability (Switzerland), 11(14), 3863. doi:10.3390/su11143863.
[89] Hasan, S. (2021). Assessment of electric vehicle repurchase intention: A survey-based study on the Norwegian EV market. Transportation Research Interdisciplinary Perspectives, 11. doi:10.1016/j.trip.2021.100439.
[90] Breschi, V., Ravazzi, C., Strada, S., Dabbene, F., & Tanelli, M. (2023). Driving electric vehicles' mass adoption: An architecture for the design of human-centric policies to meet climate and societal goals. Transportation Research Part A: Policy and Practice, 171. doi:10.1016/j.tra.2023.103651.
[91] Qian, L., & Yin, J. (2017). Linking Chinese cultural values and the adoption of electric vehicles: The mediating role of ethical evaluation. Transportation Research Part D: Transport and Environment, 56, 175–188. doi:10.1016/j.trd.2017.07.029.
[92] Avineri, E. (2012). On the use and potential of behavioural economics from the perspective of transport and climate change. Journal of Transport Geography, 24, 512–521. doi:10.1016/j.jtrangeo.2012.03.003.
[93] Guevara, C. A., Figueroa, E., & Munizaga, M. A. (2021). Paving the road for electric vehicles: Lessons from a randomized experiment in an introduction stage market. Transportation Research Part A: Policy and Practice, 153, 326–340. doi:10.1016/j.tra.2021.09.011.
[94] Wang, S., Wang, J., Li, J., Wang, J., & Liang, L. (2018). Policy implications for promoting the adoption of electric vehicles: Do consumer's knowledge, perceived risk and financial incentive policy matter? Transportation Research Part A: Policy and Practice, 117, 58–69. doi:10.1016/j.tra.2018.08.014.
[95] Chen, T. D., Wang, Y., & Kockelman, K. M. (2015). Where are the electric vehicles? A spatial model for vehicle-choice count data. Journal of Transport Geography, 43, 181–188. doi:10.1016/j.jtrangeo.2015.02.005.
[96] Plananska, J., & Gamma, K. (2022). Product bundling for accelerating electric vehicle adoption: A mixed-method empirical analysis of Swiss customers. Renewable and Sustainable Energy Reviews, 154. doi:10.1016/j.rser.2021.111760.
[97] Liu, X., Roberts, M. C., & Sioshansi, R. (2017). Spatial effects on hybrid electric vehicle adoption. Transportation Research Part D: Transport and Environment, 52, 85–97. doi:10.1016/j.trd.2017.02.014.
[98] Yi, Z., Liu, X. C., & Wei, R. (2022). Electric vehicle demand estimation and charging station allocation using urban informatics. Transportation Research Part D: Transport and Environment, 106. doi:10.1016/j.trd.2022.103264.
[99] Basmadjian, R., Kirpes, B., Mrkos, J., Cuchí½, M., & Rastegar, S. (2019). An Interoperable Reservation System for Public Electric Vehicle Charging Stations. Proceedings of the 1st ACM International Workshop on Technology Enablers and Innovative Applications for Smart Cities and Communities, 22–29. doi:10.1145/3364544.3364825.
[100] Langbroek, J. H. M., Cebecauer, M., Malmsten, J., Franklin, J. P., Susilo, Y. O., & Georén, P. (2019). Electric vehicle rental and electric vehicle adoption. Research in Transportation Economics, 73, 72–82. doi:10.1016/j.retrec.2019.02.002.
[101] Hasselqvist, H., & Hesselgren, M. (2019). Bridging citizen and stakeholder perspectives of sustainable mobility through practice-oriented design. Sustainability: Science, Practice, and Policy, 15(1), 1–14. doi:10.1080/15487733.2018.1533781.
[102] Zhang, H., Tang, L., Yang, C., & Lan, S. (2019). Locating electric vehicle charging stations with service capacity using the improved whale optimization algorithm. Advanced Engineering Informatics, 41. doi:10.1016/j.aei.2019.02.006.
[103] Babic, J., Carvalho, A., Ketter, W., & Podobnik, V. (2022). A data-driven approach to managing electric vehicle charging infrastructure in parking lots. Transportation Research Part D: Transport and Environment, 105. doi:10.1016/j.trd.2022.103198.
[104] Tao, R., Yang, X., Hao, F., & Chen, P. (2024). Demographic disparity and influences in electric vehicle adoption: A Florida case study. Transportation Research Part D: Transport and Environment, 136. doi:10.1016/j.trd.2024.104465.
[105] Sovacool, B. K. (2017). Experts, theories, and electric mobility transitions: Toward an integrated conceptual framework for the adoption of electric vehicles. Energy Research and Social Science, 27, 78–95. doi:10.1016/j.erss.2017.02.014.
[106] Jang, S., & Choi, J. Y. (2021). Which consumer attributes will act crucial roles for the fast market adoption of electric vehicles?: Estimation on the asymmetrical & heterogeneous consumer preferences on the EVs. Energy Policy, 156. doi:10.1016/j.enpol.2021.112469.
[107] Feng, B., Ye, Q., & Collins, B. J. (2019). A dynamic model of electric vehicle adoption: The role of social commerce in new transportation. Information and Management, 56(2), 196–212. doi:10.1016/j.im.2018.05.004.
[108] Ledna, C., Muratori, M., Brooker, A., Wood, E., & Greene, D. (2022). How to support EV adoption: Tradeoffs between charging infrastructure investments and vehicle subsidies in California. Energy Policy, 165. doi:10.1016/j.enpol.2022.112931.
[109] Chakraborty, D., Hardman, S., & Tal, G. (2022). Integrating plug-in electric vehicles (PEVs) into household fleets- factors influencing miles traveled by PEV owners in California. Travel Behaviour and Society, 26, 67–83. doi:10.1016/j.tbs.2021.09.004.
[110] Sierzchula, W., Bakker, S., Maat, K., & Van Wee, B. (2014). The influence of financial incentives and other socio-economic factors on electric vehicle adoption. Energy Policy, 68, 183–194. doi:10.1016/j.enpol.2014.01.043.
[111] Palit, T., Bari, A. B. M. M., & Karmaker, C. L. (2022). An integrated Principal Component Analysis and Interpretive Structural Modeling approach for electric vehicle adoption decisions in sustainable transportation systems. Decision Analytics Journal, 4. doi:10.1016/j.dajour.2022.100119.
[112] Nazari-Heris, M., Loni, A., Asadi, S., & Mohammadi-ivatloo, B. (2022). Toward social equity access and mobile charging stations for electric vehicles: A case study in Los Angeles. Applied Energy, 311. doi:10.1016/j.apenergy.2022.118704.
[113] Loengbudnark, W., Khalilpour, K., Bharathy, G., Taghikhah, F., & Voinov, A. (2022). Battery and hydrogen-based electric vehicle adoption: A survey of Australian consumers perspective. Case Studies on Transport Policy, 10(4), 2451–2463. doi:10.1016/j.cstp.2022.11.007.
[114] Murugan, M., & Marisamynathan, S. (2024). Policy analysis for sustainable EV charging facility adoption using SEM-ANN approach. Transportation Research Part A: Policy and Practice, 182. doi:10.1016/j.tra.2024.104036.
[115] Archsmith, J., Muehlegger, E., & Rapson, D. S. (2022). Future Paths of Electric Vehicle Adoption in the United States: Predictable Determinants, Obstacles, and Opportunities. Environmental and Energy Policy and the Economy, 3, 71–110. doi:10.1086/717219.
[116] White, L. V., & Sintov, N. D. (2017). You are what you drive: Environmentalist and social innovator symbolism drives electric vehicle adoption intentions. Transportation Research Part A: Policy and Practice, 99, 94–113. doi:10.1016/j.tra.2017.03.008.
[117] İmre, Šž., Celebi, D., & Koca, F. (2021). Understanding barriers and enablers of electric vehicles in urban freight transport: Addressing stakeholder needs in Turkey. Sustainable Cities and Society, 68, 102794. doi:10.1016/j.scs.2021.102794.
[118] Bera Sharma, R., & Maitra, B. (2024). Methodological approach to obtain key attributes affecting the adoption of plug-in hybrid electric vehicle. Case Studies on Transport Policy, 16. doi:10.1016/j.cstp.2024.101165.
[119] Deka, C., Dutta, M. K., Yazdanpanah, M., & Komendantova, N. (2023). Can gain motivation induce Indians to adopt electric vehicles? Application of an extended theory of Planned Behavior to map EV adoption intention. Energy Policy, 182. doi:10.1016/j.enpol.2023.113724.
[120] Adnan, N., Nordin, S. M., Rahman, I., & Amini, M. H. (2017). A market modeling review study on predicting Malaysian consumer behavior towards widespread adoption of PHEV/EV. Environmental Science and Pollution Research, 24(22), 17955–17975. doi:10.1007/s11356-017-9153-8.
[121] Osieczko, K., Zimon, D., PЂaczek, E., & Prokopiuk, I. (2021). Factors that influence the expansion of electric delivery vehicles and trucks in EU countries. Journal of Environmental Management, 296, 113177. doi:10.1016/j.jenvman.2021.113177.
[122] Ye, F., Kang, W., Li, L., & Wang, Z. (2021). Why do consumers choose to buy electric vehicles? A paired data analysis of purchase intention configurations. Transportation Research Part A: Policy and Practice, 147, 14–27. doi:10.1016/j.tra.2021.02.014.
[123] van Gevelt, T. (2014). Rural electrification and development in South Korea. Energy for Sustainable Development, 23, 179–187. doi:10.1016/j.esd.2014.09.004.
[124] Ghobadpour, A., Monsalve, G., Cardenas, A., & Mousazadeh, H. (2022). Off-Road Electric Vehicles and Autonomous Robots in Agricultural Sector: Trends, Challenges, and Opportunities. Vehicles, 4(3), 843–864. doi:10.3390/vehicles4030047.
[125] Xue, E. F. (2023). Electric Vehicle Development in Singapore and Technical Considerations for Charging Infrastructure. Advanced Concepts and Technologies for Electric Vehicles, 257–269, CRC Press, Boca Raton, United States. doi:10.1201/9781003330134-9.
[126] Tu, W., Li, Q., Fang, Z., Shaw, S. lung, Zhou, B., & Chang, X. (2016). Optimizing the locations of electric taxi charging stations: A spatial–temporal demand coverage approach. Transportation Research Part C: Emerging Technologies, 65, 172–189. doi:10.1016/j.trc.2015.10.004.
[127] Bhat, C. R., & Guo, J. (2004). A mixed spatially correlated logit model: Formulation and application to residential choice modeling. Transportation Research Part B: Methodological, 38(2), 147–168. doi:10.1016/S0191-2615(03)00005-5.
[128] Suresh Kumar, P., Shriram, R. G., Rajesh, R., & Rammohan, A. (2024). Causal analysis of the challenges to electric vehicles' adoption using GINA: Implications to emerging economies. Case Studies on Transport Policy, 15. doi:10.1016/j.cstp.2024.101160.
[129] World Bank Group. (2022). Thailand Rural Income Diagnostic. World Bank Group, Washington, United States.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
