Integration of Low-Cost GNSS and Multispectral Camera to Increase Oil Palm Position Accuracy and Health Monitoring
Downloads
Doi: 10.28991/CEJ-2025-011-03-010
Full Text: PDF
[2] Watt, P., Meredith, A., Yang, C., & Watt, M. S. (2013). Development of regional models of Pinus radiata height from GIS spatial data supported with supplementary satellite imagery. New Zealand Journal of Forestry Science, 43(4), 1–11. doi:10.1186/1179-5395-43-11.
[3] Marx, A., McFarlane, D., & Alzahrani, A. (2017). UAV data for multi-temporal Landsat analysis of historic reforestation: a case study in Costa Rica. International Journal of Remote Sensing, 38(8–10), 2331–2348. doi:10.1080/01431161.2017.1280637.
[4] Ecke, S., Stehr, F., Frey, J., Tiede, D., Dempewolf, J., Klemmt, H. J., Endres, E., & Seifert, T. (2024). Towards operational UAV-based forest health monitoring: Species identification and crown condition assessment by means of deep learning. Computers and Electronics in Agriculture, 219, 108785. doi:10.1016/j.compag.2024.108785.
[5] FAA. (2024). 2024 FAA-EASA International Aviation Safety Conference. Federal Aviation Administration (FAA), Washington, United States. Available online: https://www.faa.gov/aircraft/air_cert/international/us_eu_conference (accessed on February 2024).
[6] Shaharum, N. S. N., Shafri, H. Z. M., Ghani, W. A. W. A. K., Samsatli, S., Al-Habshi, M. M. A., & Yusuf, B. (2020). Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sensing Applications: Society and Environment, 17, 100287. doi:10.1016/j.rsase.2020.100287.
[7] Septiarini, A., Hamdani, H., Hardianti, T., Winarno, E., Suyanto, S., & Irwansyah, E. (2021). Pixel quantification and color feature extraction on leaf images for oil palm disease identification. 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), 1–5. doi:10.1109/iceeie52663.2021.9616645.
[8] Mazeh, F., El Sahili, J., & Zaraket, H. (2021). Low-Cost NDVI platform for land operation: Passive and active. IEEE Sensors Letters, 5(10), 1–4. doi:10.1109/LSENS.2021.3112822.
[9] Stamford, J. D., Vialet-Chabrand, S., Cameron, I., & Lawson, T. (2023). Development of an accurate low cost NDVI imaging system for assessing plant health. Plant Methods, 19(1), 9. doi:10.1186/s13007-023-00981-8.
[10] Marzukhi, F., Elahami, A. L., & Bohari, S. N. (2016). Detecting nutrients deficiencies of oil palm trees using remotely sensed data. IOP Conference Series: Earth and Environmental Science, 37(1), 12040. doi:10.1088/1755-1315/37/1/012040.
[11] Tugi, A., Rasib, A. W., Suri, M. A., Zainon, O., Mohd Yusoff, A. R., Abdul Rahman, M. Z., Sari, N. A., & Darwin, N. (2015). Oil palm tree growth monitoring for smallholders by using unmanned aerial vehicle. Jurnal Teknologi, 77(26), 17–27. doi:10.11113/jt.v77.6855.
[12] Wang, Q., Tenhunen, J., Dinh, N. Q., Reichstein, M., Vesala, T., & Keronen, P. (2004). Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland. Remote Sensing of Environment, 93(1–2), 225–237. doi:10.1016/j.rse.2004.07.006.
[13] Javaid, M., Haleem, A., Khan, I. H., & Suman, R. (2023). Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced Agrochem, 2(1), 15–30. doi:10.1016/j.aac.2022.10.001.
[14] Purwanto, E., Santoso, H., Jelsma, I., Widayati, A., Nugroho, H. Y. S. H., & van Noordwijk, M. (2020). Agroforestry as policy option for forest-zone oil palm production in indonesia. Land, 9(12), 1–34. doi:10.3390/land9120531.
[15] Dhaouadi, L., Besser, H., Karbout, N., Al-Omran, A., Wassar, F., Wahba, M. S., Yaohu, K., & Hamed, Y. (2021). Irrigation water management for sustainable cultivation of date palm. Applied Water Science, 11(11). doi:10.1007/s13201-021-01507-0.
[16] MAPIR Camera. (2025). Affordable remote sensing solutions for any environment. MAPIR Camera, San Diego, United States. Available online: https://www.mapir.camera/en-gb (accessed on February 2025).
[17] Alkan, R. M., Erol, S., İlçi, V., & Ozulu, M. (2020). Comparative analysis of real-time kinematic and PPP techniques in dynamic environment. Measurement: Journal of the International Measurement Confederation, 163, 107995. doi:10.1016/j.measurement.2020.107995.
[18] Majid, N. A., Ramli, Z., Sum, S. M., & Awang, A. H. (2021). Sustainable palm oil certification scheme frameworks and impacts: A systematic literature review. Sustainability (Switzerland), 13(6), 3263. doi:10.3390/su13063263.
[19] Absalome, M. A., Massara, C. C., Alexandre, A. A., Gervais, K., Chantal, G. G. A., Ferdinand, D., Rhedoor, A. J., Coulibaly, I., George, T. G., Brigitte, T., Marion, M., & Jean-Paul, C. (2020). Biochemical properties, nutritional values, health benefits and sustainability of palm oil. Biochimie, 178, 81–95. doi:10.1016/j.biochi.2020.09.019.
[20] Siswantoro, J., Artadana, I. B. M., & Siswantoro, M. Z. F. N. (2022). Leaf geometric properties measurement using computer vision system based on camera parameters. International Conference on Informatics, Technology, and Engineering 2021 (InCITE 2021): Leveraging Smart Engineering, 2470, 050008. doi:10.1063/5.0080190.
[21] Gantimurova, S., Parshin, A., & Erofeev, V. (2021). GIS-based landslide susceptibility mapping of the circum-baikal railway in Russia using UAV data. Remote Sensing, 13(18), 3629. doi:10.3390/rs13183629.
[22] Sabri, S. A., Mohd., Endut, R., B. M. Rashidi, C., R. Laili, A., A. Aljunid, S., & Ali, N. (2019). Analysis of Near-infrared (NIR) spectroscopy for chlorophyll prediction in oil palm leaves. Bulletin of Electrical Engineering and Informatics, 8(2), 506–513. doi:10.11591/eei.v8i2.1412.
[23] Saini, A., Singh, J., & Kant, R. (2022). Comparative Study of Estimation Methods for Efficient Extraction of Chlorophyll a and Carotenoids Using Different Solvents. Bulletin of Pure & Applied Sciences- Botany, 41b(2), 79–86. doi:10.5958/2320-3196.2022.00009.x.
[24] Ali, K. A., Noraldeen, S. S., & Yaseen, A. A. (2021). An Evaluation Study for Chlorophyll Estimation Techniques. Sarhad Journal of Agriculture, 37(4), 1458–1465. doi:10.17582/journal.sja/2021/37.4.1458.1465.
[25] Khorramnia, K., Khot, L. R., Shariff, A. R. B. M., Ehsani, R., Mansor, S. B., & Rahim, A. B. A. (2014). Oil palm leaf nutrient estimation by optical sensing techniques. Transactions of the ASABE, 57(4), 1267-1277. doi:10.13031/trans.57.10142.
[26] Gamon, J. A., Field, C. B., Goulden, M. L., Griffin, K. L., Hartley, A. E., Joel, G., Penuelas, J., & Valentini, R. (1995). Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecological Applications, 5(1), 28–41. doi:10.2307/1942049.
[27] Silva, S. A. S., Ferraz, G. A. S., Figueiredo, V. C., Volpato, M. M. L., Machado, M. L., Silva, V. A., ... & Bambi, G. (2024). Spatial variability of chlorophyll and NDVI obtained by different sensors in an experimental coffee field. Agronomy Research, 22(X), 1-16. doi:10.15159/AR.24.037.
[28] Рverko, Z., Vrankić, M., Vlahinić, S., & Rogelj, P. (2022). Complex Pearson Correlation Coefficient for EEG Connectivity Analysis. Sensors, 22(4), 1477. doi:10.3390/s22041477.
[29] Rodríguez-López, L., Duran-Llacer, I., González-Rodríguez, L., Abarca-del-Rio, R., Cárdenas, R., Parra, O., Martínez-Retureta, R., & Urrutia, R. (2020). Spectral analysis using LANDSAT images to monitor the chlorophyll-a concentration in Lake Laja in Chile. Ecological Informatics, 60, 101183. doi:10.1016/j.ecoinf.2020.101183.
[30] Janos, D., & Kuras, P. (2021). Evaluation of Low-Cost GNSS Receiver under Demanding Conditions in RTK Network Mode. Sensors, 21(16), 5552. doi:10.3390/s21165552.
[31] Rosner, B. (1982). A Generalization of the Paired t-Test. Applied Statistics, 31(1), 9. doi:10.2307/2347069.
[32] Elaksher, A., Ali, T., Kamtchang, F., Wegmann, C., & Guerrero, A. (2020). Performance analysis of multi-GNSS static and RTK techniques in estimating height differences. International Journal of Digital Earth, 13(5), 586-601. doi:10.1080/17538947.2018.1550118.
[33] Abid, M. A., Husein, H. N., & Hamed, N. H. (2020). Analysis of Error in Geodetic Networks using Different Observation Methods. IOP Conference Series: Materials Science and Engineering 737(1), 012234. doi:10.1088/1757-899X/737/1/012234.
[34] Š tern, A., & Kos, A. (2018). Positioning performance assessment of geodetic, automotive, and smartphone GNSS receivers in standardized road scenarios. IEEE access, 6, 41410-41428. doi:10.1109/ACCESS.2018.2856521.
[35] Paziewski, J., Sieradzki, R., & Baryla, R. (2018). Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: Application to precise dynamic displacement detection. Measurement Science and technology, 29(3), 035002. doi:10.1088/1361-6501/aa9ec2.
[36] Caruso, G., Tozzini, L., Rallo, G., Primicerio, J., Moriondo, M., Palai, G., & Gucci, R. (2017). Estimating biophysical and geometrical parameters of grapevine canopies ('Sangiovese') by an unmanned aerial vehicle (UAV) and VIS-NIR cameras. VITIS-Journal of Grapevine Research, 56(2), 63–70. doi:10.5073/vitis.2017.56.63-70.
[37] Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J. M., ... & Chen, M. (2022). Optical vegetation indices for monitoring terrestrial ecosystems globally. Nature Reviews Earth & Environment, 3(7), 477-493. doi:10.1038/s43017-022-00298-5.
[38] Kizilgeci, F., Yildirim, M., Islam, M. S., Ratnasekera, D., Iqbal, M. A., & Sabagh, A. E. L. (2021). Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability (Switzerland), 13(7), 3725. doi:10.3390/su13073725.
[39] Coyne, P. I., Aiken, R. M., Maas, S. J., & Lamm, F. R. (2009). Evaluating yield tracker forecasts for maize in Western Kansas. Agronomy Journal, 101(3), 671–680. doi:10.2134/agronj2008.0146.
[40] Jopia, A., Zambrano, F., Pérez-Martínez, W., Vidal-Páez, P., Molina, J., & Mardones, F. de la H. (2020). Time-series of vegetation indices (VNIR/SWIR) derived from sentinel-2 (A/B) to assess turgor pressure in Kiwifruit. ISPRS International Journal of Geo-Information, 9(11), 641. doi:10.3390/ijgi9110641.
[41] Taufik, M., Yuwono, Cahyadi, M. N., & Putra, J. R. (2019). Analysis level of accuracy GNSS observation processing using u-blox as low-cost GPS and geodetic GPS (case study: M8T). IOP Conference Series: Earth and Environmental Science, 389, 012041. doi:10.1088/1755-1315/389/1/012041.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
