Treatment of Industrial Wastewater of Variable Quality Using Ultrasound Irradiation
Downloads
Doi: 10.28991/CEJ-2025-011-04-013
Full Text: PDF
[2] Al-Matouq, A., Ahmed, M. E., Khajah, M., & Al-Yaseen, R. (2024). Assessment of seasonal variations of volatile organic compounds in raw and treated wastewater in Kuwait. Desalination and Water Treatment, 318, 100377. doi:10.1016/j.dwt.2024.100377.
[3] NRC. (2012). Water Reuse: Potential for Expanding the Nation's Water Supply Through Reuse of Municipal Wastewater. National Research Council: Committee on the Assessment of Water Reuse as an Approach to Meeting Future Water Supply Needs. National Academies Press, Washington, D.C., United States.
[4] Bartram, J., Baum, R., Coclanis, P. A., Gute, D. M., Kay, D., McFadyen, S., Pond, K., Robertson, W., & Rouse, M. J. (2015). Routledge handbook of water and health. Routledge Handbook of Water and Health. Routledge, New Jersey, United States. doi:10.4324/9781315693606.
[5] Kobayashi, D., & Matsumoto, H. (2019). Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction in the presence of particles. Chemical Engineering Transactions, 74, 571–576. doi:10.3303/CET1974096.
[6] Nasseri, S., Vaezi, F., Mahvi, A., Nabizadeh, R., & Haddadi, S. (2006). Determination of the ultrasonic effectiveness in advanced wastewater treatment. Journal of Environmental Health Science & Engineering, 3(2), 109–116.
[7] Al-Juboori, R., & Bowtell, L. (2020). Ultrasound Technology Integration into Drinking Water Treatment Train. Sonochemical Reactions. IntechOpen, Rijeka, Croatia. doi:10.5772/intechopen.88124.
[8] Kobayashi, D., Honma, C., Matsumoto, H., Takahashi, T., Shimada, Y., Kuroda, C., Otake, K., & Shono, A. (2014). Effects of ultrasonic frequency and initial concentration on degradation of methylene blue. Japanese Journal of Applied Physics, 53(7 SPEC. ISSUE), 3. doi:10.7567/JJAP.53.07KE03.
[9] Dehghani, M. H., Mahvi, A. H., Najafpoor, A. A., & Azam, K. (2007). Investigating the potential of using acoustic frequency on the degradation of linear alkylbenzen sulfonates from aqueous solution. Journal of Zhejiang University: Science A, 8(9), 1462–1468. doi:10.1631/jzus.2007.A1462.
[10] Ayyildiz, O., Peters, R. W., & Anderson, P. R. (2007). Sonolytic degradation of halogenated organic compounds in groundwater: Mass transfer effects. Ultrasonics Sonochemistry, 14(2), 163–172. doi:10.1016/j.ultsonch.2006.04.004.
[11] Maleki, A., Mahvi, A. H., Mesdaghinia, A., & Naddafi, K. (2007). Degradation and toxicity reduction of phenol by ultrasound waves. Bulletin of the Chemical Society of Ethiopia, 21(1), 33–38. doi:10.4314/bcse.v21i1.61368.
[12] Mahvi, A. H., . M. H. D., & . F. V. (2005). Ultrasonic Technology Effectiveness in Total Coliforms Disinfection of Water. Journal of Applied Sciences, 5(5), 856–858. doi:10.3923/jas.2005.856.858.
[13] Mahvi, A. H. (2009). Application of ultrasonic technology for water and wastewater treatment. Iranian Journal of Public Health, 38(2), 1–17.
[14] Yadav N, K. R. (2014). Effect of Two Waves of Ultrasonic on Waste Water Treatment. Journal of Chemical Engineering & Process Technology, 5(3), 1. doi:10.4172/2157-7048.1000193.
[15] Wang, N., Li, L., Wang, K., Huang, X., Han, Y., Ma, X., Wang, M., Lv, X., & Bai, X. (2023). Study and Application Status of Ultrasound in Organic Wastewater Treatment. Sustainability (Switzerland), 15(21), 15524. doi:10.3390/su152115524.
[16] Ang, W. L., McHugh, P. J., & Symes, M. D. (2022). Sonoelectrochemical processes for the degradation of persistent organic pollutants. Chemical Engineering Journal, 444, 136573. doi:10.1016/j.cej.2022.136573.
[17] Son, Y. (2016). Advanced oxidation processes using ultrasound technology for water and wastewater treatment. Handbook of Ultrasonics and Sonochemistry, 711–732. doi:10.1007/978-981-287-278-4_53.
[18] Wu, T. Y., Guo, N., Teh, C. Y., & Hay, J. X. W. (2013). Applications of Ultrasound Technology in Environmental Remediation. Advances in Ultrasound Technology for Environmental Remediation, 13–93. doi:10.1007/978-94-007-5533-8_3.
[19] Mahamuni, N. N., & Adewuyi, Y. G. (2010). Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation. Ultrasonics Sonochemistry, 17(6), 990–1003. doi:10.1016/j.ultsonch.2009.09.005.
[20] Peters, D. (2001). Sonolytic degradation of volatile pollutants in natural ground water: Conclusions from a model study. Ultrasonics Sonochemistry, 8(3), 221–226. doi:10.1016/S1350-4177(01)00080-3.
[21] Ghosh, S., & Sahu, M. (2024). Ultrasound for the degradation of endocrine disrupting compounds in aqueous solution: A review on mechanisms, influence of operating parameters and cost estimation. Chemosphere, 349, 140864. doi:10.1016/j.chemosphere.2023.140864.
[22] Yang, N., Jun, B. M., Choi, J. S., Park, C. M., Jang, M., Son, A., Nam, S. N., & Yoon, Y. (2024). Ultrasonic treatment of dye chemicals in wastewater: A review. Chemosphere, 354, 141676. doi:10.1016/j.chemosphere.2024.141676.
[23] Flndlk, S. (2018). Treatment of petroleum refinery effluent using ultrasonic irradiation. Polish Journal of Chemical Technology, 20(4), 20–25. doi:10.2478/pjct-2018-0049.
[24] Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3–4), 501–551. doi:10.1016/S1093-0191(03)00032-7.
[25] Elgarahy, A. M., Eloffy, M. G., Priya, A. K., Yogeshwaran, V., Elwakeel, K. Z., Yang, Z., & Lopez-Maldonado, E. A. (2024). A review on the synergistic efficacy of sonication-assisted water treatment process with special attention given to microplastics. Chemical Engineering Research and Design, 206, 524–552. doi:10.1016/j.cherd.2024.05.027.
[26] Sponza, D. T., & Oztekin, R. (2010). Destruction of some more and less hydrophobic PAHs and their toxicities in a petrochemical industry wastewater with sonication in Turkey. Bioresource Technology, 101(22), 8639–8648. doi:10.1016/j.biortech.2010.06.124.
[27] Lakshmi, N. J., Surabhi, P., Gogate, P. R., & Pandit, A. B. (2024). Treatment of Bio-Refractory Real Effluent from Polymer Processing Industry Using Cavitation-Based Hybrid Treatment Techniques. Arabian Journal for Science and Engineering, 49(6), 7893–7912. doi:10.1007/s13369-023-08478-1.
[28] Baştürk, E. (2024). UV- and US-Based Oxidation of a Triazine Azo Dye (Reactive Red 120): Operational Parameters, Kinetics, Water Matrix Effect, Predominant Radicals, and Energy Efficiency. Arabian Journal for Science and Engineering, 49(6), 7829–7849. doi:10.1007/s13369-023-08479-0.
[29] Pakhale, V. D., & Gogate, P. R. (2021). Removal of Rhodamine 6G from Industrial Wastewater Using Combination Approach of Adsorption Followed by Sonication. Arabian Journal for Science and Engineering, 46(7), 6473–6484. doi:10.1007/s13369-020-05074-5.
[30] Sivakumar, M., & Pandit, A. B. (2002). Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique. Ultrasonics Sonochemistry, 9(3), 123–131. doi:10.1016/S1350-4177(01)00122-5.
[31] Moholkar, V. S., Rekveld, S., & Warmoeskerken, M. M. C. G. (2000). Modeling of the acoustic pressure fields and the distribution of the cavitation phenomena in a dual frequency sonic processor. Ultrasonics, 38(1), 666–670. doi:10.1016/S0041-624X(99)00204-8.
[32] Vergara, L., Nickel, K., & Neis, U. (2012). Optimisation of Assets by Ultrasound to Achieve Lowest Operational Costs. 6th European Waste Water Management Conference & Exhibition, 1–18.
[33] Cetinkaya, S. G., Morcali, M. H., Akarsu, S., Ziba, C. A., & Dolaz, M. (2018). Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater. Sustainable Environment Research, 28(4), 165–170. doi:10.1016/j.serj.2018.02.001.
[34] APHA. (2005). Standard methods for the examination of water and wastewater. American Public Health Association, Washington, D.C., United States.
[35] Oliveira, J. F. de, Fia, R., Fia, F. R. L., Rodrigues, F. N., Matos, M. P. de, & Siniscalchi, L. A. B. (2020). Principal component analysis as a criterion for monitoring variable organic load of swine wastewater in integrated biological reactors UASB, SABF and HSSF-CW. Journal of Environmental Management, 262, 110386. doi:10.1016/j.jenvman.2020.110386.
[36] Tang, Z., Liu, M., Yi, L., Guo, H., Ouyang, T., Yin, H., & Li, M. (2019). Source apportionment and health risk assessment of heavy metals in Eastern Guangdong municipal solid waste. Applied Sciences (Switzerland), 9(22), 4755. doi:10.3390/app9224755.
[37] Wang, J., Wang, Z., Vieira, C. L. Z., Wolfson, J. M., Pingtian, G., & Huang, S. (2019). Review on the treatment of organic pollutants in water by ultrasonic technology. Ultrasonics Sonochemistry, 55, 273–278. doi:10.1016/j.ultsonch.2019.01.017.
[38] Zhou, X., Zhou, X., Wang, C., & Zhou, H. (2023). Environmental and human health impacts of volatile organic compounds: A perspective review. Chemosphere, 313, 137489. doi:10.1016/j.chemosphere.2022.137489.
[39] David, E., & Niculescu, V. C. (2021). Volatile organic compounds (Vocs) as environmental pollutants: Occurrence and mitigation using nanomaterials. International Journal of Environmental Research and Public Health, 18(24), 13147. doi:10.3390/ijerph182413147.
[40] Wang, M., Ateia, M., Awfa, D., & Yoshimura, C. (2021). Regrowth of bacteria after light-based disinfection ” What we know and where we go from here. Chemosphere, 268, 128850. doi:10.1016/j.chemosphere.2020.128850.
[41] Collivignarelli, M. C., Abbí , A., Benigna, I., Sorlini, S., & Torretta, V. (2018). Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability (Switzerland), 10(1), 86. doi:10.3390/su10010086.
[42] Suslick, K. S., Mdleleni, M. M., & Ries, J. T. (1997). Chemistry induced by hydrodynamic cavitation. Journal of the American Chemical Society, 119(39), 9303–9304. doi:10.1021/ja972171i.
[43] Patidar, R., & Srivastava, V. C. (2020). Mechanistic insight into ultrasound-induced enhancement of electrochemical oxidation of ofloxacin: Multi-response optimization and cost analysis. Chemosphere, 257, 127121. doi:10.1016/j.chemosphere.2020.127121.
[44] Tran, N., Drogui, P., Brar, S. K., & De Coninck, A. (2017). Synergistic effects of ultrasounds in the sonoelectrochemical oxidation of pharmaceutical carbamazepine pollutant. Ultrasonics Sonochemistry, 34, 380–388. doi:10.1016/j.ultsonch.2016.06.014.
[45] Yin, C., Ye, T., Yu, Y., Li, W., & Ren, Q. (2019). Detection of hydroxyl radicals in sonoelectrochemical system. Microchemical Journal, 144, 369–376. doi:10.1016/j.microc.2018.09.025.
[46] Gujar, S. K., Gogate, P. R., Kanthale, P., Pandey, R., Thakre, S., & Agrawal, M. (2021). Combined oxidation processes based on ultrasound, hydrodynamic cavitation and chemical oxidants for treatment of real industrial wastewater from cellulosic fiber manufacturing sector. Separation and Purification Technology, 257, 117888. doi:10.1016/j.seppur.2020.117888.
[47] Wen, H., Cheng, D., Chen, Y., Yue, W., & Zhang, Z. (2024). Review on ultrasonic technology enhanced biological treatment of wastewater. Science of the Total Environment, 925, 171260. doi:10.1016/j.scitotenv.2024.171260.
[48] Shi, H., Wang, Q., Ni, J., Xu, Y., Song, N., & Gao, M. (2020). Highly efficient removal of amoxicillin from water by three-dimensional electrode system within granular activated carbon as particle electrode. Journal of Water Process Engineering, 38, 101656. doi:10.1016/j.jwpe.2020.101656.
[49] Patidar, R., & Srivastava, V. C. (2022). Ultrasound-assisted electrochemical treatment of cosmetic industry wastewater: Mechanistic and detoxification analysis. Journal of Hazardous Materials, 422, 126842. doi:10.1016/j.jhazmat.2021.126842.
[50] Mortezazadeh, F., Nejatzadeh, F., Eslamifar, M., & Gholami-Borujeni, F. (2024). Enhancing Disinfection Efficiency of Wastewater Treatment Plant Effluent: The Role of ZnO Nanoparticles in Ultrasonic and UV-C Processes. Nano, 19(2), 2350100. doi:10.1142/S179329202350100X.
[51] Thokchom, B., Qiu, P., Cui, M., Park, B., Pandit, A. B., & Khim, J. (2017). Magnetic Pd@Fe3O4 composite nanostructure as recoverable catalyst for sonoelectrohybrid degradation of Ibuprofen. Ultrasonics Sonochemistry, 34, 262–272. doi:10.1016/j.ultsonch.2016.05.030.
[52] Dominguez, C. M., Oturan, N., Romero, A., Santos, A., & Oturan, M. A. (2018). Lindane degradation by electrooxidation process: Effect of electrode materials on oxidation and mineralization kinetics. Water Research, 135, 220–230. doi:10.1016/j.watres.2018.02.037.
[53] Gibson, J. H., Hon, H., Farnood, R., Droppo, I. G., & Seto, P. (2009). Effects of ultrasound on suspended particles in municipal wastewater. Water Research, 43(8), 2251–2259. doi:10.1016/j.watres.2009.02.024.
[54] Yadav, M., Gole, V. L., Sharma, J., & Yadav, R. K. (2022). Biologically treated industrial wastewater disinfection using the synergy of low-frequency ultrasound and H2O2/O3. Journal of Environmental Health Science and Engineering, 20(2), 889–898. doi:10.1007/s40201-022-00829-8.
[55] Lazarotto, J. S., Júnior, E. P. M., Medeiros, R. C., Volpatto, F., & Silvestri, S. (2022). Sanitary sewage disinfection with ultraviolet radiation and ultrasound. International Journal of Environmental Science and Technology, 19(11), 11531–11538. doi:10.1007/s13762-021-03764-7.
[56] Naddeo, V., Cesaro, A., Mantzavinos, D., Fatta-Kassinos, D., & Belgiorno, V. (2014). Water and wastewater disinfection by ultrasound irradiation-a critical review. Global Nest Journal, 16(3), 561–577. doi:10.30955/gnj.001350.
[57] Vázquez-López, M., Amabilis-Sosa, L. E., Moeller-Chávez, G. E., Roé-Sosa, A., Neumann, P., & Vidal, G. (2019). Evaluation of the ultrasound effect on treated municipal wastewater. Environmental Technology (United Kingdom), 40(27), 3568–3577. doi:10.1080/09593330.2018.1481889.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
