Dynamic Analysis of MICP-Stabilized Soil and Liquefiable Soil With Varying Salinity Levels
Downloads
Doi: 10.28991/CEJ-2025-011-04-010
Full Text: PDF
[2] Farooq, M. A., & Nimbalkar, S. (2024). Monotonic and cyclic triaxial testing of untreated and polyurethane-treated soil and soil–rubber mixtures. Acta Geotechnica, 19(2), 605–630. doi:10.1007/s11440-023-02100-2.
[3] Khashila, M., Hussien, M. N., Chekired, M., & Karray, M. (2021). On the Dynamic Soil Behavior under Triaxial and Simple Shear Modes. International Journal of Geomechanics, 21(8), 04021134. doi:10.1061/(asce)gm.1943-5622.0002085.
[4] Wang, W., He, X., Wu, S., & Chu, J. (2024). Presence of Mg-calcite and its influence on MICP and EICP processes. Journal of Rock Mechanics and Geotechnical Engineering, 1-12. doi:10.1016/j.jrmge.2024.09.045.
[5] Smitha, S., & Rangaswamy, K. (2020). Effect of Biopolymer Treatment on Pore Pressure Response and Dynamic Properties of Silty Sand. Journal of Materials in Civil Engineering, 32(8), 04020217. doi:10.1061/(asce)mt.1943-5533.0003285.
[6] Smitha, S., Rangaswamy, K., & Keerthi, D. S. (2021). Triaxial test behaviour of silty sands treated with agar biopolymer. International Journal of Geotechnical Engineering, 15(4), 484–495. doi:10.1080/19386362.2019.1679441.
[7] Kassas, K., Adamidis, O., & Anastasopoulos, I. (2021). Shallow strip foundations subjected to earthquake-induced soil liquefaction: Validation, modelling uncertainties, and boundary effects. Soil Dynamics and Earthquake Engineering, 147, 106719. doi:10.1016/j.soildyn.2021.106719.
[8] Zhu, L., Yang, Q., Luo, L., & Cui, S. (2022). Pore-Water Pressure Model for Carbonate Fault Materials Based on Cyclic Triaxial Tests. Frontiers in Earth Science, 10, 1–12. doi:10.3389/feart.2022.842765.
[9] Zhu, M., Kong, F., Li, Y., Li, M., Zhang, J., & Xi, M. (2020). Effects of moisture and salinity on soil dissolved organic matter and ecological risk of coastal wetland. Environmental Research, 187, 109659. doi:10.1016/j.envres.2020.109659.
[10] Rifa'i, A., Fathani, T. F., & Adi, A. D. (2024). Post-Earthquake Liquefaction Vulnerability Mapping by Swedish Weight Sounding and Standard Penetration Test. Civil Engineering Journal, 10(7), 2216-2232. doi:10.28991/CEJ-2024-010-07-09.
[11] Xu, K., Huang, M., Liu, Z., Cui, M., & Li, S. (2023). Mechanical properties and disintegration behavior of EICP-reinforced sea sand subjected to drying-wetting cycles. Biogeotechnics, 1(2), 100019. doi:10.1016/j.bgtech.2023.100019.
[12] Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1), 100002. doi:10.1016/j.bgtech.2023.100002.
[13] Yu, X., Tan, Y., Song, W., Kemeny, J., Qi, S., Zheng, B., & Guo, S. (2024). Damage evolution of rock-encased-backfill structure under stepwise cyclic triaxial loading. Journal of Rock Mechanics and Geotechnical Engineering, 16(2), 597–615. doi:10.1016/j.jrmge.2023.11.015.
[14] Voyagaki, E., Kishida, T., Aldulaimi, R. F., & Mylonakis, G. (2023). Integration and calibration of UBCSAND model for drained monotonic and cyclic triaxial compression of aggregates. Soil Dynamics and Earthquake Engineering, 171, 107978. doi:10.1016/j.soildyn.2023.107978.
[15] Wang, P., Zhang, N., Wei, Q., Xu, X., Cui, G., Li, A., Yang, S., & Kan, J. (2024). Mechanical responses of anchoring structure under triaxial cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering, 16(2), 545–560. doi:10.1016/j.jrmge.2023.04.020.
[16] Molina-Gómez, F., Viana da Fonseca, A., Ferreira, C., & Caicedo, B. (2023). Improvement of cyclic liquefaction resistance induced by partial saturation: An interpretation using wave-based approaches. Soil Dynamics and Earthquake Engineering, 167, 107819. doi:10.1016/j.soildyn.2023.107819.
[17] Jain, A., Mittal, S., & Shukla, S. K. (2023). Liquefaction proneness of stratified sand-silt layers based on cyclic triaxial tests. Journal of Rock Mechanics and Geotechnical Engineering, 15(7), 1826-1845. doi:10.1016/j.jrmge.2022.09.015.
[18] Diana, N. A., Soemitro, R. A. A., Ekaputri, J. J., Satrya, T. R., & Warnana, D. D. (2024). The influence of variations in salinity levels on the biocementing process on soil improvement of liquefaction potential. IOP Conference Series: Earth and Environmental Science, 1372(1), 012071. doi:10.1088/1755-1315/1372/1/012071.
[19] Song, Z., Wu, C., Li, Z., & Shen, D. (2024). Fracture sealing based on microbially induced carbonate precipitation and its engineering applications: A review. Biogeotechnics, 2(4), 100100. doi:10.1016/j.bgtech.2024.100100.
[20] Weng, Y., Lai, H., Zheng, J., Cui, M., Chen, Y., Xu, Z., Jiang, W., Zhang, J., & Song, Y. (2024). Effect of acid type on biomineralization of soil using crude soybean urease solution. Journal of Rock Mechanics and Geotechnical Engineering, 5135-5146. doi:10.1016/j.jrmge.2024.09.017.
[21] Kuo, C. H., Huang, J. Y., Lin, C. M., Chen, C. Te, & Wen, K. L. (2021). Near-surface frequency-dependent nonlinear damping ratio observation of ground motions using SMART1. Soil Dynamics and Earthquake Engineering, 147, 106798. doi:10.1016/j.soildyn.2021.106798.
[22] Wang, Y., Soga, K., DeJong, J. T., & Kabla, A. J. (2021). Effects of Bacterial Density on Growth Rate and Characteristics of Microbial-Induced CaCO3 Precipitates: Particle-Scale Experimental Study. Journal of Geotechnical and Geoenvironmental Engineering, 147(6), 04021036. doi:10.1061/(asce)gt.1943-5606.0002509.
[23] Mijic, Z., Bray, J. D., Riemer, M. F., Rees, S. D., & Cubrinovski, M. (2021). Cyclic and monotonic simple shear testing of native Christchurch silty soil. Soil Dynamics and Earthquake Engineering, 148, 106834. doi:10.1016/j.soildyn.2021.106834.
[24] Quintero, J., Gomes, R. C., Rios, S., Ferreira, C., & Viana da Fonseca, A. (2023). Liquefaction assessment based on numerical simulations and simplified methods: A deep soil deposit case study in the Greater Lisbon. Soil Dynamics and Earthquake Engineering, 169. doi:10.1016/j.soildyn.2023.107866.
[25] Peellage, W. H., Fatahi, B., & Rasekh, H. (2023). Assessment of cyclic deformation and critical stress amplitude of jointed rocks via cyclic triaxial testing. Journal of Rock Mechanics and Geotechnical Engineering, 15(6), 1370–1390. doi:10.1016/j.jrmge.2023.02.001.
[26] Dejong, J. T., Soga, K., Kavazanjian, E., Burns, S., Van Paassen, L. A., AL Qabany, A., Aydilek, A., Bang, S. S., Burbank, M., Caslake, L. F., Chen, C. Y., Cheng, X., Chu, J., Ciurli, S., Esnault-Filet, A., Fauriel, S., Hamdan, N., Hata, T., Inagaki, Y., ... Weaver, T. (2013). Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Geotechnique, 63(4), 287–301. doi:10.1680/geot.SIP13.P.017.
[27] Yang, C., Lv, D., Jiang, S., Lin, H., Sun, J., Li, K., & Sun, J. (2021). Soil salinity regulation of soil microbial carbon metabolic function in the Yellow River Delta, China. Science of the Total Environment, 790, 148258. doi:10.1016/j.scitotenv.2021.148258.
[28] Diana, N. A., Soemitro, R. A. A., Ekaputri, J. J., Satrya, T. R., & Warnana, D. D. (2024). Evaluation of Liquefaction Risk Based on Soil Grain Size Characteristics and Standard Penetration Test (N-SPT) Resistance Results Case Study of Yogyakarta International Airport. Publication of Civil Engineering Orientation Research (Protection), 6(1), 51–58. doi:10.26740/proteksi.v6n1.p51-58. (In Indonesian).
[29] Tsuchida, H. (1970). Prediction and countermeasure against the liquefaction in sand deposits. Abstract of the seminar in the Port and Harbor Research Institute, Kanagawa, Japan.
[30] Miyamoto, M., Tuchida, H., Sakuraya, N., Omote, T., Iwasaki, H., & Namiki, A. (1988). Changes of liver function following prolonged general anesthesia. The Journal of Japan Society for Clinical Anesthesia, 8(3), 284-288.
[31] Gitanjali Kennedy, A., Ge, L., & Jhuo, Y.-S. (2024). Experimental Study of Ground Improvement Using Enzyme Induced Calcite Precipitation (EICP). Japanese Geotechnical Society Special Publication, 10(51), 1918–1923. doi:10.3208/jgssp.v10.os-40-04.
[32] Xiao, Y., He, X., Zaman, M., Ma, G., & Zhao, C. (2022). Review of Strength Improvements of Biocemented Soils. International Journal of Geomechanics, 22(11), 1–23. doi:10.1061/(asce)gm.1943-5622.0002565.
[33] Yao, C. R., Wang, B., Liu, Z. Q., Fan, H., Sun, F. H., & Chang, X. H. (2019). Evaluation of liquefaction potential in saturated sand under different drainage boundary conditions-An energy approach. Journal of Marine Science and Engineering, 7(11), 411. doi:10.3390/jmse7110411.
[34] Zhang, J., Bilotta, E., Sun, Q., & Yuan, Y. (2024). Numerical simulation and parametric analysis on a shallow tunnel in liquefiable ground subject to multiple shakings. Soil Dynamics and Earthquake Engineering, 183, 108802. doi:10.1016/j.soildyn.2024.108802.
[35] Liu, C., Yuan, Y., He, W., & Zhang, L. (2019). Durability analysis of seashore saline soil bound with a slag compound binder. Soils and Foundations, 59(5), 1456–1467. doi:10.1016/j.sandf.2019.06.005.
[36] Mustafa, H., Maulana, A., Irfan, U. R., & Tonggiroh, A. (2023). The geoelectric approach to analyzing the profile of post-mining nickel laterite deposits in the Motui District, North Konawe Regency, Indonesia. IOP Conference Series: Earth and Environmental Science, 1134(1), 012035. doi:10.1088/1755-1315/1134/1/012035.
[37] Rahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., & Iqbal, A. (2020). State-of-the-art review of microbial-induced calcite precipitation and its sustainability in engineering applications. Sustainability (Switzerland), 12(15), 6281. doi:10.3390/SU12156281.
[38] Lai, H., Ding, X., Cui, M., Zheng, J., Chu, J., Chen, Z., & Zhang, J. (2024). A new bacterial concentration method for large-scale applications of biomineralization. Journal of Rock Mechanics and Geotechnical Engineering, 16(12), 5109-5120. doi:10.1016/j.jrmge.2024.01.015.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
