An Innovative Design of Strip and Circular Footings on Sand Surface: Stress–Density Framework
Downloads
Doi: 10.28991/CEJ-2025-011-03-03
Full Text: PDF
[2] Janabi, F. H., Raja, R. A., Sakleshpur, V. A., Prezzi, M., & Salgado, R. (2023). Experimental Study of Shape and Depth Factors and Deformations of Footings in Sand. Journal of Geotechnical and Geoenvironmental Engineering, 149(2), 04022128. doi:10.1061/jggefk.gteng-10874.
[3] Bolton, M. D. (1986). The strength and dilatancy of sands. Geotechnique, 36(1), 65–78. doi:10.1680/geot.1986.36.1.65.
[4] Okahara, M. (1988). Centrifuge tests on scale effect of bearing capacity. Proceedings of the 42nd Annual Conference of the Japan Society of Civil Engineers, Tokyo, Japan.
[5] Altaee, A., & Fellenius, B. H. (1994). Physical modeling in sand. Canadian Geotechnical Journal, 31(3), 420–431. doi:10.1139/t94-049.
[6] Tatsuoka, F. (1991). Progressive failure and particle size effect in bearing capacity of a footing on sand. Proc. Geotechnical Engineering Congress, 10-12 June, 1991, Boulder, United States.
[7] Okamura, M., Takemura, J., & Kimura, T. (1997). Centrifuge Model Tests on Bearing Capacity and Deformation of Sand Layer Overlying Clay. Soils and Foundations, 37(1), 73–88. doi:10.3208/sandf.37.73.
[8] Okamura, M., Takemura, J., & Kimura, T. (1993). A Study on Bearing Capacities of Shallow Footings on Sand. Doboku Gakkai Ronbunshu, 1993(463), 85–94. doi:10.2208/jscej.1993.463_85.
[9] Diaz-Segura, E. G. (2013). Assessment of the range of variation of Nγ from 60 estimation methods for footings on sand. Canadian Geotechnical Journal, 50(7), 793–800. doi:10.1139/cgj-2012-0426.
[10] Santamarina, J. C., & Cho, G. C. (2001). Determination of Critical State Parameters in Sandy Soils - Simple Procedure. Geotechnical Testing Journal, 24(2), 185–192. doi:10.1520/gtj11338j.
[11] Sadrekarimi, A., & Olson, S. M. (2011). Critical state friction angle of sands. Géotechnique, 61(9), 771–783. doi:10.1680/geot.9.p.090.
[12] Jefferies, M., & Been, K. (2015). Soil liquefaction: a critical state approach. CRC Press, London, United Kingdom. doi:10.1201/b19114.
[13] Yang, J., & Luo, X. D. (2018). The critical state friction angle of granular materials: does it depend on grading? Acta Geotechnica, 13(3), 535–547. doi:10.1007/s11440-017-0581-x.
[14] Raja, R. A., Sakleshpur, V. A., Prezzi, M., & Salgado, R. (2023). Effect of Relative Density and Particle Morphology on the Bearing Capacity and Collapse Mechanism of Strip Footings in Sand. Journal of Geotechnical and Geoenvironmental Engineering, 149(8), 04023052. doi:10.1061/jggefk.gteng-11324.
[15] De Beer, E. E. (1965). Bearing capacity and settlement of shallow foundations on sand. Bearing Capacity and Settlement of Foundations: Proceedings of a Symposium, 5-6 April, Duke University, Durham, United Kingdom.
[16] Chakraborty, D., & Kumar, J. (2013). Dependency of Nγ on footing diameter for circular footings. Soils and Foundations, 53(1), 173–180. doi:10.1016/j.sandf.2012.12.013.
[17] Kumar, J., & Khatri, V. N. (2008). Effect of footing width on Ng. Canadian Geotechnical Journal, 45(12), 1673–1684. doi:10.1139/T08-113.
[18] Jahanandish, M., Veiskarami, M., & Ghahramani, A. (2010). Effect of Stress Level on the Bearing Capacity Factor, Nγ, by the ZEL Method. KSCE Journal of Civil Engineering, 14(5), 709–723. doi:10.1007/s12205-010-0866-1.
[19] Veiskarami, M., Jahanandish, M., & Ghahramani, A. (2010). Application of the Zel Method in the Prediction of Foundation Bearing Capacity Considering the Stress Level Effect. Soil Mechanics and Foundation Engineering, 47(3), 75–85. doi:10.1007/s11204-010-9092-6.
[20] Yamaguchi, H., Kimura, T., & Fuji-i, N. (1976). on the Influence of Progressive Failure on the Bearing Capacity of Shallow Foundations in Dense Sand. Soils and Foundations, 16(4), 11–22. doi:10.3208/sandf1972.16.4_11.
[21] Kamalzadeh, A., & Pender, M. J. (2023). Dilatancy Effects on Surface Foundations on Dry Sand. International Journal of Geomechanics, 23(3), 04022302. doi:10.1061/ijgnai.gmeng-7826.
[22] Zhu, F., Clark, J. I., & Phillips, R. (2001). Scale Effect of Strip and Circular Footings Resting on Dense Sand. Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 613–621. doi:10.1061/(asce)1090-0241(2001)127:7(613).
[23] Perkins, S. W., & Madson, C. R. (2000). Bearing Capacity of Shallow Foundations on Sand: A Relative Density Approach. Journal of Geotechnical and Geoenvironmental Engineering, 126(6), 521–530. doi:10.1061/(asce)1090-0241(2000)126:6(521).
[24] Loukidis, D., & Salgado, R. (2011). Effect of relative density and stress level on the bearing capacity of footings on sand. Geotechnique, 61(2), 107–119. doi:10.1680/geot.8.P.150.3771.
[25] Ueno, K., Miura, K., & Maeda, Y. (1998). Prediction of ultimate bearing capacity of surface footings with regard to size effects. Soils and Foundations, 38(3), 165–178. doi:10.3208/sandf.38.3_165.
[26] Ueno, K., Miura, K., Kusakabe, O., & Nishimura, M. (2001). Reappraisal of Size Effect of Bearing Capacity from Plastic Solution. Journal of Geotechnical and Geoenvironmental Engineering, 127(3), 275–281. doi:10.1061/(asce)1090-0241(2001)127:3(275).
[27] Jitchaijaroen, W., Ranjan Kumar, D., Keawsawasvong, S., Wipulanusat, W., & Jamsawang, P. (2024). Hybrid artificial neural network models for bearing capacity evaluation of a strip footing on sand based on Bolton failure criterion. Transportation Geotechnics, 48. doi:10.1016/j.trgeo.2024.101347.
[28] Liu, Y., & Liang, Y. (2024). Integrated machine learning for modeling bearing capacity of shallow foundations. Scientific Reports, 14(1), 8319. doi:10.1038/s41598-024-58534-5.
[29] Alzabeebee, S., Alshkane, Y. M. A., & Keawsawasvong, S. (2023). New Model to Predict Bearing Capacity of Shallow Foundations Resting on Cohesionless Soil. Geotechnical and Geological Engineering, 41(6), 3531–3547. doi:10.1007/s10706-023-02472-y.
[30] Dehghanbanadaki, A., & Motamedi, S. (2024). Bearing capacity prediction of shallow foundation on sandy soils: a comparative study of analytical, FEM, and machine learning approaches. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7(2), 1293–1310. doi:10.1007/s41939-023-00280-8.
[31] Lawal, A. I., & Kwon, S. (2023). Development of mathematically motivated hybrid soft computing models for improved predictions of ultimate bearing capacity of shallow foundations. Journal of Rock Mechanics and Geotechnical Engineering, 15(3), 747–759. doi:10.1016/j.jrmge.2022.04.005.
[32] Kumar, M., Kumar, V., Biswas, R., Samui, P., Kaloop, M. R., Alzara, M., & Yosri, A. M. (2022). Hybrid ELM and MARS-Based Prediction Model for Bearing Capacity of Shallow Foundation. Processes, 10(5), 1013. doi:10.3390/pr10051013.
[33] hahin, M. (2024). Progression of artificial intelligence/machine learning in geotechnical engineering. Machine Learning and Data Science in Geotechnics, 1(1), 1–5. doi:10.1108/mlag-10-2024-0010.
[34] Igoe, D., Zahedi, P., & Soltani-Jigheh, H. (2024). Predicting the Compression Capacity of Screw Piles in Sand Using Machine Learning Trained on Finite Element Analysis. Geotechnics, 4(3), 807–823. doi:10.3390/geotechnics4030042.
[35] Alipour, M. J., & Wu, W. (2024). A Simple Hypoplastic Model for Sand Under Cyclic Loading. Recent Geotechnical Research at BOKU, Springer Series in Geomechanics and Geoengineering, Springer, Cham, Switzerland. doi:10.1007/978-3-031-52159-1_1.
[36] Woodward, P. K., Nesnas, K., & Griffiths, D. V. (2000). Advanced numerical modelling of footings on granular soils. Proceedings of Sessions of Geo-Denver 2000 - Numerical Methods in Geotechnical Engineering, GSP 96, 284, 88–101. doi:10.1061/40502(284)7.
[37] Ramadan, M. I., & Meguid, M. (2020). Behavior of cantilever secant pile wall supporting excavation in sandy soil considering pile-pile interaction. Arabian Journal of Geosciences, 13(12). doi:10.1007/s12517-020-05483-8.
[38] Gudehus, G., Amorosi, A., Gens, A., Herle, I., Kolymbas, D., MaŠ¡ín, D., Wood, D. M., Niemunis, A., Nova, R., Pastor, M., Tamagnini, C., & Viggiani, G. (2008). The soilmodels.info project. International Journal for Numerical and Analytical Methods in Geomechanics, 32(12), 1571–1572. doi:10.1002/nag.675.
[39] MaŠ¡ín, D., & Duque, J. (2023). Excavation of KomoŠ™any Tunnel in Sand: A Case Study. International Journal of Geomechanics, 23(8). doi:10.1061/ijgnai.gmeng-8591.
[40] Qiu, G., & Grabe, J. (2012). Numerical investigation of bearing capacity due to spudcan penetration in sand overlying clay. Canadian Geotechnical Journal, 49(12), 1393–1407. doi:10.1139/T2012-085.
[41] Qiu, G., & Henke, S. (2011). Controlled installation of spudcan foundations on loose sand overlying weak clay. Marine Structures, 24(4), 528–550. doi:10.1016/j.marstruc.2011.06.005.
[42] Wichtmann, T., & Triantafyllidis, T. (2016). An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I”tests with monotonic loading and stress cycles. Acta Geotechnica, 11(4), 739–761. doi:10.1007/s11440-015-0402-z.
[43] MaŠ¡ín, D. (2019). Modelling of Soil Behaviour with Hypoplasticity. In Springer Series in Geomechanics and Geoengineering. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-030-03976-9.
[44] Ng, C. W. W., Boonyarak, T., & MaŠ¡ín, D. (2013). Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels. Canadian Geotechnical Journal, 50(9), 935–946. doi:10.1139/cgj-2012-0445.
[45] Wegener, D., & Herle, I. (2012). On stiffness at small strains in the context of hypoplasticity. Geotechnik, 35(4), 229–235. doi:10.1002/gete.201200006.
[46] Chow, S. H., Roy, A., Herduin, M., Heins, E., King, L., Bienen, B., ... & Cassidy, M. (2019). Characterisation of UWA superfine silica sand. GEO 18844, Centre for Offshore Foundation Systems, Crawley, Australia.
[47] Niemunis, A., & Herle, I. (1997). Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials, 2(4), 279–299. doi:10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8.
[48] Herle, I., & Gudehus, G. (1999). Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials, 4(5), 461–486. doi:10.1002/(SICI)1099-1484(199909)4:5<461::AID-CFM71>3.0.CO;2-P.
[49] Yu, L. Q., Wang, L. Z., Guo, Z., Bhattacharya, S., Nikitas, G., Li, L. L., & Xing, Y. L. (2015). Long-term dynamic behavior of monopile supported offshore wind turbines in sand. Theoretical and Applied Mechanics Letters, 5(2), 80–84. doi:10.1016/j.taml.2015.02.003.
[50] Hong, Y., Koo, C. H., Zhou, C., Ng, C. W. W., & Wang, L. Z. (2017). Small Strain Path-Dependent Stiffness of Toyoura Sand: Laboratory Measurement and Numerical Implementation. International Journal of Geomechanics, 17(1), 1–10. doi:10.1061/(asce)gm.1943-5622.0000664.
[51] Chen, J., Dong, Y., & Whittle, A. J. (2020). Prediction and Evaluation of Size Effects for Surface Foundations on Sand. Journal of Geotechnical and Geoenvironmental Engineering, 146(5), 1–13. doi:10.1061/(asce)gt.1943-5606.0002237.
[52] Chen, Y., Zhao, W., Han, J., & Jia, P. (2019). A CEL study of bearing capacity and failure mechanism of strip footing resting on c-φ soils. Computers and Geotechnics, 111, 126–136. doi:10.1016/j.compgeo.2019.03.015.
[53] Morikage, A., Kusakabe, O., Yamaguchi, H., & Kobayanshi, T. (1990). Centrifuge model tests on bearing capacity of circular and rectangular footings on dry sand. Proceedings of the 25th Japan Annual Conference of Soil Mechanics and Foundation Engineering, Tokyo, Japan.
[54] Kusakabe, O. (1991). Experiment and analysis on the scale effect of Nγ for circular and rectangular footings. Proceedings of the International Conference Centrifuge, 13-14 June, 1991, Boulder, United States.
[55] Clark, J. I. (1998). The settlement and bearing capacity of very large foundations on strong soils: 1996 R.M. Hardy keynote address. Canadian Geotechnical Journal, 35(1), 131–145. doi:10.1139/t97-070.
[56] Zhu, F. (1998). Centrifuge modelling and numerical analysis of bearing capacity of ring foundations on sand. PhD Thesis, Memorial University of Newfoundland, St. John's, Canada.
[57] Govoni, L., Gourvenec, S., & Gottardi, G. (2010). Centrifuge modelling of circular shallow foundations on sand. International Journal of Physical Modelling in Geotechnics, 10(2), 35–46. doi:10.1680/ijpmg.2010.10.2.35.
[58] Cerato, A. B., & Lutenegger, A. J. (2007). Scale Effects of Shallow Foundation Bearing Capacity on Granular Material. Journal of Geotechnical and Geoenvironmental Engineering, 133(10), 1192–1202. doi:10.1061/(asce)1090-0241(2007)133:10(1192).
[59] Ziccarelli, M., Valore, C., Muscolino, S. R., & Fioravante, V. (2017). Centrifuge tests on strip footings on sand with a weak layer. Geotechnical Research, 4(1), 47–64. doi:10.1680/jgere.16.00021.
[60] Kutter, B. L., Abghari, A., & Cheney, J. A. (1989). Strength parameters for bearing capacity of sand. Journal of Geotechnical Engineering, 115(12), 1818–1819. doi:10.1061/(ASCE)0733-9410(1989)115:12(1818).
[61] Jensen, M. R., & Lehane, B. (2020). The effects of sand grading on the bearing capacity of surface foundations. 4th European Conference on Physical Modelling in Geotechnics. Lulea University of Technology, 6-8 September, 2020, Lulea, Sweden.
[62] De Beer, E. E. (1970). Experimental determination of the shape factors and the bearing capacity factors of sand. Geotechnique, 20(4), 387–411. doi:10.1680/geot.1970.20.4.387.
[63] Winterkorn, H. F., & Fang, H. Y. (1991). Soil technology and engineering properties of soils. Foundation engineering handbook, 88-143. Springer, Boston, United States. doi:10.1007/978-1-4615-3928-5_3.
[64] de Beer, E. E. (1970). Experimental Determination of the Shape Factors and the Bearing Capacity Factors of Sand. Géotechnique, 20(4), 387–411. doi:10.1680/geot.1970.20.4.387.
[65] Shafiqul Islam, M., Rokonuzzaman, M., & Sakai, T. (2017). Shape Effect of Square and Circular Footing under Vertical Loading: Experimental and Numerical Studies. International Journal of Geomechanics, 17(9), 06017014. doi:10.1061/(asce)gm.1943-5622.0000965.
[66] Lyamin, A. V., Salgado, R., Sloan, S. W., & Prezzi, M. (2007). Two- And three-dimensional bearing capacity of footings in sand. Geotechnique, 57(8), 647–662. doi:10.1680/geot.2007.57.8.647.
[67] Ueno, K., Nakatomi, T., & Mito, K. (1994). Influence of initial conditions on bearing characteristics of sand. International conference centrifuge 94, 31 August-2 September, 1994, Singapore.
[68] Riemer, M. F., Seed, R. B., Nicholson, P. G., & Jong, H. L. (1990). Steady state testing of loose sands: Limiting minimum density. Journal of Geotechnical Engineering, 116(2), 332–339. doi:10.1061/(ASCE)0733-9410(1990)116:2(332).
[69] Kokkali, P., Anastasopoulos, I., Abdoun, T., & Gazetas, G. (2015). Static and cyclic rocking on sand: Centrifuge versus reduced-scale LG experiments. Geotechnical Earthquake Engineering - Geotechnique Symposium in Print 2015, 64, 155–170. doi:10.1680/geot.14.P.064.
[70] White, D. J., Teh, K. L., Leung, C. F., & Chow, Y. K. (2008). A comparison of the bearing capacity of flat and conical circular foundations on sand. Geotechnique, 58(10), 781–792. doi:10.1680/geot.2008.3781.
[71] Hleibieh, J., & Herle, I. (2019). The performance of a hypoplastic constitutive model in predictions of centrifuge experiments under earthquake conditions. Soil Dynamics and Earthquake Engineering, 122, 310–317. doi:10.1016/j.soildyn.2018.10.031.
[72] Kimura, T., Kusakabe, O., & Saitoh, K. (1985). Geotechnical Model Tests of Bearing in a Centrifuge Capacity. Geotechnique, 35(1), 33–45. doi:10.1680/geot.1985.35.1.33.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
