IRI Performance Models for Flexible, Semi-Rigid and Composite Pavements in Double-Carriageway Roads

Itziar Gurrutxaga, Ángela Alonso-Solórzano, Miren Isasa, Heriberto Pérez-Acebo

Abstract


Pavement Management Systems (PMS) depend upon reliable pavement performance models. In this paper, our aim is to develop International Roughness Index (IRI) prediction models for the heavily trafficked (right-hand) lanes of motorways in the province of Gipuzkoa (Spain) in flexible, semi-rigid, and composite pavements. A deterministic approach was selected, based on the available information in the PMS employed in that province, covering complete pavement structures. Omitting pavement type, the model yielded a determination coefficient () of 0.696 with only three variables: pavement age, cumulative volume of heavy vehicles travelling through the section, and total thickness of bituminous layers. Then, two superior models were generated with pavement type as a variable, yielding values of 0.781 and 0.795, respectively. Unlike the opaque features of Machine Learning (ML), the deterministic models captured precise relationships between the variables to a high degree of accuracy. They can moreover be applied to all pavements with bituminous layers, unlike many other models that are only applicable to a single pavement type. Furthermore, the models are presented for freeways where traffic is randomly distributed between lanes; a less widely covered topic in the literature.

 

Doi: 10.28991/CEJ-2025-011-05-01

Full Text: PDF


Keywords


International Roughness Index; Pavement Performance Model; Flexible Pavement; Semi-Rigid Pavement; Composite Pavements.

References


Gautam, P. K., Kalla, P., Jethoo, A. S., Agrawal, R., & Singh, H. (2018). Sustainable use of waste in flexible pavement: A review. Construction and Building Materials, 180, 239–253. doi:10.1016/j.conbuildmat.2018.04.067.

Mulungye, R. M., Owende, P. M. O., & Mellon, K. (2007). Finite element modelling of flexible pavements on soft soil subgrades. Materials and Design, 28(3), 739–756. doi:10.1016/j.matdes.2005.12.006.

Huang, Y., Bird, R. N., & Heidrich, O. (2007). A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52(1), 58–73. doi:10.1016/j.resconrec.2007.02.002.

Riaz, A., Yasir, N., Badin, G., & Mahmood, Y. (2024). Innovative Pavement Solutions: A Comprehensive Review from Conventional Asphalt to Sustainable Colored Alternatives. Infrastructures, 9(10), 186. doi:10.3390/infrastructures9100186.

Ullidtz, P. (1987). Pavement Analysis. Developments in Civil Engineering. Elsevier, Amsterdam, Netherlands.

Fedrigo, W., Visser, A. T., Steyn, W. J. M., & Núñez, W. P. (2021). Flexural behaviour of lightly cement stabilised materials: South Africa and Brazil. Road Materials and Pavement Design, 22(2), 397–422. doi:10.1080/14680629.2019.1634637.

Xu, J., Li, N., & Xu, T. (2022). Temperature Changes of Interlaminar Bonding Layer in Different Seasons and Effects on Mechanical Properties of Asphalt Pavement. International Journal of Pavement Research and Technology, 15(3), 589–605. doi:10.1007/s42947-021-00039-9.

Huhtala, M., Pihlajamaki, J., & Pienimaki, M. (1989). Effects of tires and tire pressures on road pavements. Transportation Research Record, 1227(1227), 107–114.

Tingle, J. S., Newman, J. K., Larson, S. L., Weiss, C. A., & Rushing, J. F. (2007). Stabilization mechanisms of nontraditional additives. Transportation Research Record, 2(1989), 59–67. doi:10.3141/1989-49.

Shon, C. S., Saylak, D., & Mishra, S. K. (2010). Combined use of calcium chloride and fly ash in road base stabilization. Transportation Research Record, 2186, 120–129. doi:10.3141/2186-13.

Linares-Unamunzaga, A., Gonzalo-Orden, H., Minguela, J. D., & Pérez-Acebo, H. (2018). New procedure for compacting prismatic specimens of cement-treated base materials. Applied Sciences (Switzerland), 8(6), 970. doi:10.3390/app8060970.

Osorio-Lird, A., Chamorro, A., & González, Á. (2021). Analysis of roughness performance of chloride-stabilised rural roads. International Journal of Pavement Engineering, 22(13), 1720–1730. doi:10.1080/10298436.2020.1721496.

Diniz, B. C., Fedrigo, W., Kleinert, T. R., Batista, G. dos S., Núñez, W. P., Correa, B. M., & Brito, L. A. T. (2024). Lime Stabilization of Tropical Soil for Resilient Pavements: Mechanical, Microscopic, and Mineralogical Characteristics. Materials, 17(19), 4720. doi:10.3390/ma17194720.

Linares-Unamunzaga, A., Pérez-Acebo, H., Rojo, M., & Gonzalo-Orden, H. (2019). Flexural strength prediction models for soil-cement from Unconfined Compressive Strength at Seven Days. Materials, 12(3), 387. doi:10.3390/ma12030387.

Li, Q., Wang, Z., Li, Y., & Shang, J. (2018). Cold recycling of lime-fly ash stabilized macadam mixtures as pavement bases and subbases. Construction and Building Materials, 169, 306–314. doi:10.1016/j.conbuildmat.2018.03.030.

Dong, Q., Zhao, X., Chen, X., Ma, X., & Cui, X. (2021). Long-term mechanical properties of in situ semi-rigid base materials. Road Materials and Pavement Design, 22(7), 1692–1707. doi:10.1080/14680629.2019.1710239.

Lv, S., Xia, C., Liu, H., You, L., Qu, F., Zhong, W., Yang, Y., & Washko, S. (2021). Strength and fatigue performance for cement-treated aggregate base materials. International Journal of Pavement Engineering, 22(6), 690–699. doi:10.1080/10298436.2019.1634808.

Yu, L., Wu, Y., Meng, Y., Huang, G., Li, R., & Pei, J. (2023). Study on fatigue crack propagation failure in semi-rigid base. Construction and Building Materials, 409, 134007. doi:10.1016/j.conbuildmat.2023.134007.

Khattak, M. J., Nur, M. A., Bhuyan, M. R. U. K., & Gaspard, K. (2014). International roughness index models for HMA overlay treatment of flexible and composite pavements. International Journal of Pavement Engineering, 15(4), 334–344. doi:10.1080/10298436.2013.842237.

Chen, C., Williams, R. C., Marasinghe, M. G., Ashlock, J. C., Smadi, O., Schram, S., & Buss, A. (2015). Assessment of composite pavement performance by survival analysis. Journal of Transportation Engineering, 141(9), 04015018. doi:10.1061/(ASCE)TE.1943-5436.0000784.

Pérez-Acebo, H., Montes-Redondo, M., Appelt, A., & Findley, D. J. (2023). A simplified skid resistance predicting model for a freeway network to be used in a pavement management system. International Journal of Pavement Engineering, 24(2), 2020266. doi:10.1080/10298436.2021.2020266.

Salas, M. Á., Pérez-Acebo, H., Calderón, V., & Gonzalo-Orden, H. (2018). Bitumen modified with recycled polyurethane foam for employment in hot mix asphalt. Ingenieria e Investigacion, 38(1), 60–66. doi:10.15446/ing.investig.v38n1.65631.

Zeiada, W., Hamad, K., Omar, M., Underwood, B. S., Khalil, M. A., & Karzad, A. S. (2019). Investigation and modelling of asphalt pavement performance in cold regions. International Journal of Pavement Engineering, 20(8), 986–997. doi:10.1080/10298436.2017.1373391.

Zeiada, W., Dabous, S. A., Hamad, K., Al-Ruzouq, R., & Khalil, M. A. (2020). Machine Learning for Pavement Performance Modelling in Warm Climate Regions. Arabian Journal for Science and Engineering, 45(5), 4091–4109. doi:10.1007/s13369-020-04398-6.

Naseri, H., Jahanbakhsh, H., Foomajd, A., Galustanian, N., Karimi, M. M., & D. Waygood, E. O. (2023). A newly developed hybrid method on pavement maintenance and rehabilitation optimization applying Whale Optimization Algorithm and random forest regression. International Journal of Pavement Engineering, 24(2), 2147672. doi:10.1080/10298436.2022.2147672.

Shokoohi, M., Golroo, A., & Ardeshir, A. (2023). Pavement maintenance planning using a risk-based approach and fault tree analysis. International Journal of Pavement Engineering, 24(2), 2276160. doi:10.1080/10298436.2023.2276160.

Sandamal, K., Shashiprabha, S., Muttil, N., & Rathnayake, U. (2023). Pavement Roughness Prediction Using Explainable and Supervised Machine Learning Technique for Long-Term Performance. Sustainability (Switzerland), 15(12), 9617. doi:10.3390/su15129617.

Kulkarni, R. B., & Miller, R. W. (2003). Pavement Management Systems: Past, Present, and Future. Transportation Research Record, 1853(1853), 65–71. doi:10.3141/1853-08.

Santos, J., & Ferreira, A. (2012). Pavement design optimization considering costs and preventive interventions. Journal of Transportation Engineering, 138(7), 911–923. doi:10.1061/(ASCE)TE.1943-5436.0000390.

Gomes Correia, M., Bonates, T. de O. e., Prata, B. de A., & Nobre Júnior, E. F. (2022). An integer linear programming approach for pavement maintenance and rehabilitation optimization. International Journal of Pavement Engineering, 23(8), 2710–2727. doi:10.1080/10298436.2020.1869736.

Yao, L., Leng, Z., Jiang, J., & Ni, F. (2022). Modelling of pavement performance evolution considering uncertainty and interpretability: a machine learning based framework. International Journal of Pavement Engineering, 23(14), 5211–5226. doi:10.1080/10298436.2021.2001814.

AASHTO. (1993). AASHTO Guide for design of pavement structures. American Association of State Highway and Transportation Officials, Washington, United States.

Pérez-Acebo, H., Mindra, N., Railean, A., & Rojí, E. (2019). Rigid pavement performance models by means of Markov Chains with half-year step time. International Journal of Pavement Engineering, 20(7), 830–843. doi:10.1080/10298436.2017.1353390.

Wu, Z., Flintsch, G., Ferreira, A., & de Picado-Santos, L. (2012). Framework for multiobjective optimization of physical highway assets investments. Journal of Transportation Engineering, 138(12), 1411–1421. doi:10.1061/(ASCE)TE.1943-5436.0000458.

Khan, M. U., Mesbah, M., Ferreira, L., & Williams, D. J. (2016). Development of optimum pavement maintenance strategies for a road network. Australian Journal of Civil Engineering, 14(2), 85–96. doi:10.1080/14488353.2017.1362823.

Odoki, J. B., & Kerali, H. G. (2000). Analytical framework and model descriptions. HDM 4: Highway Development & Management Series, 4, 1–627.

Liu, Q., Xie, J., & Zhang, Z. (2021). A Vehicle Fuel Consumption Model on Reconstructed Roads Based on the Roughness and Its Measurement Method. Advances in Civil Engineering, 8812376. doi:10.1155/2021/8812376.

Fani, A., Golroo, A., Ali Mirhassani, S., & Gandomi, A. H. (2022). Pavement maintenance and rehabilitation planning optimisation under budget and pavement deterioration uncertainty. International Journal of Pavement Engineering, 23(2), 414–424. doi:10.1080/10298436.2020.1748628.

Zhang, Z., Zhang, H., Xu, S., & Lv, W. (2022). Pavement roughness evaluation method based on the theoretical relationship between acceleration measured by smartphone and IRI. International Journal of Pavement Engineering, 23(9), 3082–3098. doi:10.1080/10298436.2021.1881783.

Levesque, W., Samson, N., Bégin-Drolet, A., & Lépine, J. (2023). Pavement-effects on heavy-vehicle fuel consumption in cold climate using a statistical approach. Transportation Research Part D: Transport and Environment, 120. doi:10.1016/j.trd.2023.103792.

Tamagusko, T., & Ferreira, A. (2023). Machine Learning for Prediction of the International Roughness Index on Flexible Pavements: A Review, Challenges, and Future Directions. Infrastructures, 8(12), 170. doi:10.3390/infrastructures8120170.

Sayers, M., Gillespie, T. D., & Queiroz, C. A. V. (1984). International Experiment to Establish Correlation and Standard Calibration Methods for Road Roughness Measurements. The World Bank, Washington, United States.

Sayers, M. W. (1995). On the calculation of international roughness index from longitudinal road profile. Transportation Research Record, Washington, United States.

Sayers, M. W., Gillespie, T. D., & Paterson, W. D. O. (1986). Guidelines for Conducting and Calibrating Road Roughness Measurements. World Bank Technical Paper Number 46, The World Bank, Washington, United States.

Múčka, P. (2017). International Roughness Index specifications around the world. Road Materials and Pavement Design, 18(4), 929–965. doi:10.1080/14680629.2016.1197144.

Lin, J. D., Yau, J. T., & Hsiao, L. H. (2003). Correlation analysis between international roughness index (IRI) and pavement distress by neural network. 82nd Annual Meeting of the Transportation Research Board, 12-16, January, 2003, Washington, United States.

Yamany, M. S., Saeed, T. U., Volovski, M., & Ahmed, A. (2020). Characterizing the Performance of Interstate Flexible Pavements Using Artificial Neural Networks and Random Parameters Regression. Journal of Infrastructure Systems, 26(2), 04020010. doi:10.1061/(asce)is.1943-555x.0000542.

Sidess, A., Ravina, A., & Oged, E. (2022). A model for predicting the deterioration of the international roughness index. International Journal of Pavement Engineering, 23(5), 1393–1403. doi:10.1080/10298436.2020.1804062.

Alonso-Solorzano, Á., Pérez-Acebo, H., Findley, D. J., & Gonzalo-Orden, H. (2023). Transition probability matrices for pavement deterioration modelling with variable duty cycle times. International Journal of Pavement Engineering, 24(2), 2278694. doi:10.1080/10298436.2023.2278694.

Pérez-Acebo, H., Bejan, S., & Gonzalo-Orden, H. (2018). Transition Probability Matrices for Flexible Pavement Deterioration Models with Half-Year Cycle Time. International Journal of Civil Engineering, 16(9), 1045–1056. doi:10.1007/s40999-017-0254-z.

Gharieb, M., Nishikawa, T., Nakamura, S., & Thepvongsa, K. (2022). Modeling of Pavement Roughness Utilizing Artificial Neural Network Approach for Laos National Road Network. Journal of Civil Engineering and Management, 28(4), 261–277. doi:10.3846/jcem.2022.15851.

Isradi, M., Rifai, A. I., Prasetijo, J., Kinasih, R. K., & Setiawan, M. I. (2024). Development of Pavement Deterioration Models Using Markov Chain Process. Civil Engineering Journal (Iran), 10(9), 2954–2965. doi:10.28991/CEJ-2024-010-09-012.

Boonsiripant, S., Athan, C., Jedwanna, K., Lertworawanich, P., & Sawangsuriya, A. (2024). Comparative Analysis of Deep Neural Networks and Graph Convolutional Networks for Road Surface Condition Prediction. Sustainability (Switzerland), 16(22), 9805. doi:10.3390/su16229805.

AASHTO. (2012). Pavement Management Guide (2nd Ed.). American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.

Hudson, W. R., Haas, R., & Pedigo, R. D. (1979). Pavement Management System Development. National Cooperative Highway Research Program Report 2015, Highway Research Record 407, Transportation Research Board, National Research Council, Washington, United States.

Saplioglu, M., Unal, A., & Bocek, M. (2022). Detection of critical road roughness sections by trend analysis and investigation of driver speed interaction. Frontiers of Structural and Civil Engineering, 16(4), 515–532. doi:10.1007/s11709-022-0814-4.

Haas, R., Hudson, W. R., & Zaniewski, J. P. (1994). Modern pavement management. Krieger Publishing Company, Melbourne, United States.

Uddin, W. (2005). Pavement Management Systems. The Handbook of Highway Engineering, CRC Press, Boca Raton, United States. doi:10.1201/9781420039504.ch18.

Justo-Silva, R., Ferreira, A., & Flintsch, G. (2021). Review on machine learning techniques for developing pavement performance prediction models. Sustainability (Switzerland), 13(9), 5248. doi:10.3390/su13095248.

Abaza, K. A. (2018). Empirical-Markovian model for predicting the overlay design thickness for asphalt concrete pavement. Road Materials and Pavement Design, 19(7), 1617–1635. doi:10.1080/14680629.2017.1338188.

Sharma, A., Sachdeva, S. N., & Aggarwal, P. (2023). Predicting IRI Using Machine Learning Techniques. International Journal of Pavement Research and Technology, 16(1), 128–137. doi:10.1007/s42947-021-00119-w.

Wu, Y., Pang, Y., & Zhu, X. (2024). Evolution of prediction models for road surface irregularity: Trends, methods and future. Construction and Building Materials, 449, 138316. doi:10.1016/j.conbuildmat.2024.138316.

Park, S. H., & Kim, J. H. (2019). Comparative Analysis of Performance Prediction Models for Flexible Pavements. Journal of Transportation Engineering, Part B: Pavements, 145(1), 04018062. doi:10.1061/jpeodx.0000090.

Dong, Q., Huang, B., & Richards, S. H. (2015). Calibration and application of treatment performance models in a pavement management system in Tennessee. Journal of Transportation Engineering, 141(2), 04014076. doi:10.1061/(ASCE)TE.1943-5436.0000738.

Amador-Jiménez, L. E., & Mrawira, D. (2011). Reliability-based initial pavement performance deterioration modelling. International Journal of Pavement Engineering, 12(2), 177–186. doi:10.1080/10298436.2010.535538.

Elhadidy, A. A., Elbeltagi, E. E., & El-Badawy, S. M. (2020). Network-Based Optimization System for Pavement Maintenance Using a Probabilistic Simulation-Based Genetic Algorithm Approach. Journal of Transportation Engineering, Part B: Pavements, 146(4), 04020069. doi:10.1061/jpeodx.0000237.

García-Segura, T., Montalbán-Domingo, L., Llopis-Castelló, D., Lepech, M. D., Sanz, M. A., & Pellicer, E. (2022). Incorporating pavement deterioration uncertainty into pavement management optimization. International Journal of Pavement Engineering, 23(6), 2062–2073. doi:10.1080/10298436.2020.1837827.

Li, N., Haas, R., & Xie, W. C. (1997). Development of a new asphalt pavement performance prediction model. Canadian Journal of Civil Engineering, 24(4), 547–559. doi:10.1139/l97-001.

Abaza, K. A. (2016). Back-calculation of transition probabilities for Markovian-based pavement performance prediction models. International Journal of Pavement Engineering, 17(3), 253–264. doi:10.1080/10298436.2014.993185.

Yamany, M. S., Abraham, D. M., & Labi, S. (2021). Comparative Analysis of Markovian Methodologies for Modeling Infrastructure System Performance. Journal of Infrastructure Systems, 27(2), 04021003. doi:10.1061/(asce)is.1943-555x.0000604.

Alimoradi, S., Golroo, A., & Asgharzadeh, S. M. (2022). Development of pavement roughness master curves using Markov Chain. International Journal of Pavement Engineering, 23(2), 453–463. doi:10.1080/10298436.2020.1752917.

Alaswadko, N., & Hwayyis, K. (2022). An approach to investigate the supplementary inconsistency between time series data for predicting road pavement performance models. International Journal of Pavement Engineering, 24(2), 2045017. doi:10.1080/10298436.2022.2045017.

Gong, H., Sun, Y., Hu, W., Polaczyk, P. A., & Huang, B. (2019). Investigating impacts of asphalt mixture properties on pavement performance using LTPP data through random forests. Construction and Building Materials, 204, 203–212. doi:10.1016/j.conbuildmat.2019.01.198.

Aljarah, I., Faris, H., & Mirjalili, S. (2018). Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Computing, 22(1), 1–15. doi:10.1007/s00500-016-2442-1.

Mishra, R., Gupta, H. P., & Dutta, T. (2021). A Road Health Monitoring System Using Sensors in Optimal Deep Neural Network. IEEE Sensors Journal, 21(14), 15527–15534. doi:10.1109/JSEN.2020.3005998.

Elshaboury, N., Yamany, M. S., Labi, S., & Smadi, O. (2024). Enhancing local road pavement condition prediction using Bayesian-optimized ensemble machine learning and adaptive synthetic sampling technique. International Journal of Pavement Engineering, 25(1), 2365957. doi:10.1080/10298436.2024.2365957.

Sollazzo, G., Fwa, T. F., & Bosurgi, G. (2017). An ANN model to correlate roughness and structural performance in asphalt pavements. Construction and Building Materials, 134, 684–693. doi:10.1016/j.conbuildmat.2016.12.186.

García de Soto, B., Bumbacher, A., Deublein, M., & Adey, B. T. (2018). Predicting road traffic accidents using artificial neural network models. Infrastructure Asset Management, 5(4), 132–144. doi:10.1680/jinam.17.00028.

AASHTO. (1962). The AASHTO Road Test: Pavement research. Washington, DC: National Academy of Sciences - National Research Council, American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.

Watanatada, T., Harral, C. G., Paterson, W. D. O., Dhareshwar, A. M., Bhandari, A., & Tsunokawa, K. (1990). The highway design and maintenance standards model. Volume 1. Description of the HDM-III model. Transportation Research Part A: General. John Hopkins University Press, Maryland, United States.

Morosiuk, G., Riley, M. J., & Odoki, J. B. (2004). Modelling road deterioration and works effects-version 2-Highway Development and Management-HDM-4. Highway development and management series, The World Bank, Washington, United States.

Paterson, W. D. O. (1990). Road deterioration and maintenance effects: Models for planning and management. In Transportation Research Part A: General. John Hopkins University Press, Maryland, United States. doi:10.1016/0191-2607(90)90027-4.

Pérez-Acebo, H., Linares-Unamunzaga, A., Abejón, R., & Rojí, E. (2018). Research trends in pavement management during the first years of the 21st century: A bibliometric analysis during the 2000-2013 Period. Applied Sciences (Switzerland), 8(7), 1041. doi:10.3390/app8071041.

AASHTO. (2008). Mechanistic-Empirical Pavement Design Guide. A manual of practice. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.

AASHTO. (2015). Mechanistic-Empirical Pavement Design Guide. A manual of practice (2nd Ed.). American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.

AASHTO. (2004). Guide for Mechanistic-Empirical design of new and rehabilitated pavement structures; NCHRP 1-37A. American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.

Abdelaziz, N., Abd El-Hakim, R. T., El-Badawy, S. M., & Afify, H. A. (2020). International Roughness Index prediction model for flexible pavements. International Journal of Pavement Engineering, 21(1), 88–99. doi:10.1080/10298436.2018.1441414.

Pérez-Acebo, H., Linares-Unamunzaga, A., Rojí, E., & Gonzalo-Orden, H. (2020). IRI performance models for flexible pavements in two-lane roads until first maintenance and/or rehabilitation work. Coatings, 10(2), 97. doi:10.3390/coatings10020097.

Moreira, A. V., Tinoco, J., Oliveira, J. R. M., & Santos, A. (2018). An application of Markov chains to predict the evolution of performance indicators based on pavement historical data. International Journal of Pavement Engineering, 19(10), 937–948. doi:10.1080/10298436.2016.1224412.

Alaswadko, N., Hassan, R., Meyer, D., & Mohammed, B. (2019). Modelling roughness progression of sealed granular pavements: a new approach. International Journal of Pavement Engineering, 20(2), 222–232. doi:10.1080/10298436.2017.1283689.

Naseri, H., Ehsani, M., Golroo, A., & Moghadas Nejad, F. (2022). Sustainable pavement maintenance and rehabilitation planning using differential evolutionary programming and coyote optimisation algorithm. International Journal of Pavement Engineering, 23(8), 2870–2887. doi:10.1080/10298436.2021.1873331.

Marcelino, P., de Lurdes Antunes, M., Fortunato, E., & Gomes, M. C. (2021). Machine learning approach for pavement performance prediction. International Journal of Pavement Engineering, 22(3), 341–354. doi:10.1080/10298436.2019.1609673.

Kaloop, M. R., El-Badawy, S. M., Ahn, J., Sim, H. B., Hu, J. W., & Abd El-Hakim, R. T. (2022). A hybrid wavelet-optimally-pruned extreme learning machine model for the estimation of international roughness index of rigid pavements. International Journal of Pavement Engineering, 23(3), 862–876. doi:10.1080/10298436.2020.1776281.

Choi, S., & Do, M. (2020). Development of the road pavement deterioration model based on the deep learning method. Electronics (Switzerland), 9(1), 3. doi:10.3390/electronics9010003.

Nguyen, H. L., Pham, B. T., Son, L. H., Thang, N. T., Ly, H. B., Le, T. T., Ho, L. S., Le, T. H., & Bui, D. T. (2019). Adaptive network based fuzzy inference system with meta-heuristic optimizations for international roughness index prediction. Applied Sciences (Switzerland), 9(21), 4715. doi:10.3390/app9214715.

Yang, L., Hu, Y., & Zhang, H. (2020). Comparative study on asphalt pavement rut based on analytical models and test data. International Journal of Pavement Engineering, 21(6), 781–795. doi:10.1080/10298436.2018.1511781.

Guo, R., Nian, T., Li, P., Fu, J., & Guo, H. (2019). Anti-erosion performance of asphalt pavement with a sub-base of cement-treated mixtures. Construction and Building Materials, 223, 278–287. doi:10.1016/j.conbuildmat.2019.06.202.

Wang, X., & Zhong, Y. (2019). Reflective crack in semi-rigid base asphalt pavement under temperature-traffic coupled dynamics using XFEM. Construction and Building Materials, 214, 280–289. doi:10.1016/j.conbuildmat.2019.04.125.

Yan, X., Chen, L., You, Q., & Fu, Q. (2019). Experimental analysis of thermal conductivity of semi-rigid base asphalt pavement. Road Materials and Pavement Design, 20(5), 1215–1227. doi:10.1080/14680629.2018.1431147.

AASHTO. (2020). Mechanistic-Empirical Pavement Design Guide. A manual of practice (3rd Ed.). American Association of State Highway and Transportation Officials (AASHTO), Washington, United States.

Pérez-Acebo, H., Gonzalo-Orden, H., Findley, D. J., & Rojí, E. (2021). Modeling the international roughness index performance on semi-rigid pavements in single carriageway roads. Construction and Building Materials, 272, 121665. doi:10.1016/j.conbuildmat.2020.121665.

Hanson, J. R. (2006). Cracking and Roughness of Asphalt Pavements Constructed Using Cement-Treated Base Materials. Master Thesis, Brigham Young University, Provo, United States.

Assogba, O. C., Tan, Y., Zhou, X., Zhang, C., & Anato, J. N. (2020). Numerical investigation of the mechanical response of semi-rigid base asphalt pavement under traffic load and nonlinear temperature gradient effect. Construction and Building Materials, 235, 117406. doi:10.1016/j.conbuildmat.2019.117406.

Barros, R., Yasarer, H., Uddin, W., & Sultana, S. (2021). Roughness Modeling for Composite Pavements using Machine Learning. IOP Conference Series: Materials Science and Engineering, 1203(3), 032035. doi:10.1088/1757-899x/1203/3/032035.

Barros, R., Yasarer, H., & Sultana, S. (2022). International Roughness Index Model for Composite Pavements in the LTPP Wet Non-Freeze Climate Region: Machine Learning and Regression Approaches. 101st Annual Meeting of the Transportation Research Board (TRB), 9-13 January, 2022, Washington, United States.

Neema, I. (2020). Cluster-Based Composite Pavement Deterioration Modeling: A Framework for Incorporating Flooding. Master Thesis, The University of North Carolina at Charlotte, Charlotte, United States.

Kaya, O., Ceylan, H., Kim, S., Waid, D., & Moore, B. P. (2020). Statistics and Artificial Intelligence-Based Pavement Performance and Remaining Service Life Prediction Models for Flexible and Composite Pavement Systems. Transportation Research Record, 2674(10), 448–460. doi:10.1177/0361198120915889.

Al-Suleiman, T. I., & Shiyab, A. M. S. (2003). Prediction of Pavement Remaining Service Life Using Roughness Data - Case Study in Dubai. International Journal of Pavement Engineering, 4(2), 121–129. doi:10.1080/10298430310001634834.

Georgiou, P., Plati, C., & Loizos, A. (2018). Soft Computing Models to Predict Pavement Roughness: A Comparative Study. Advances in Civil Engineering, 2018. doi:10.1155/2018/5939806.

DFG/GFA (2024). Road capacity information for Gipuzkoa. Compilation up to 2023. Dep. de Infraestructuras Viarias y Estrategia Territorial, Donostia-San Sebastián, Spain. (In Spanish).

MFOM (Ministerio de Fomento). (2003). FOM/3460/2003, of November 28, approving standard 6.1-IC "Road Sections" of the Highway Instructions. Ministerio de Fomento, Madrid, Spain. (In Spanish).

Hwang, Y., & Song, J. (2023). Recent deep learning methods for tabular data. Communications for Statistical Applications and Methods, 30(2), 215–226. doi:10.29220/CSAM.2023.30.2.215.

Borisov, V., Leemann, T., Sebler, K., Haug, J., Pawelczyk, M., & Kasneci, G. (2024). Deep Neural Networks and Tabular Data: A Survey. IEEE Transactions on Neural Networks and Learning Systems, 35(6), 7499–7519. doi:10.1109/TNNLS.2022.3229161.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons, Hoboken, United States.

Pérez-Acebo, H., Gonzalo-Orden, H., & Rojí, E. (2019). Skid resistance prediction for new two-lane roads. Proceedings of the Institution of Civil Engineers: Transport, 172(5), 264–273. doi:10.1680/jtran.17.00045.

Zhou, Q., Okte, E., & Al-Qadi, I. L. (2021). Predicting pavement roughness using deep learning algorithms. Transportation Research Record, 2675(11), 1062–1072. doi:10.1177/03611981211023765.

George, K. P. (2000). MDOT pavement management system: prediction models and feedback system (No. FHWA/MS-DOT-RD-00-119). Department of Transportation, Mississippi, United States.

Albuquerque, F., & Núñez, W. (2011). Development of roughness prediction models for low-volume road networks in Northeast Brazil. Transportation Research Record, 2205, 198–205. doi:10.3141/2205-25.

Zu, F., Du, C., Han, C., Xu, L., & Peng, Q. (2023). Applicable Conditions of Room-and-Pillar Mining Goaf Treatment Methods under a Traffic Load. Applied Sciences (Switzerland), 13(3), 2024. doi:10.3390/app13032024.

Aragón, G., Pérez-Acebo, H., Salas, M. Á., & Aragón-Torre, Á. (2024). Analysis of the static and dynamic elastic moduli of a one-coat rendering mortar with laboratory and in situ samples. Case Studies in Construction Materials, 20. doi:10.1016/j.cscm.2024.e02868.

Han, S. H., & Kim, J. K. (2004). Effect of temperature and age on the relationship between dynamic and static elastic modulus of concrete. Cement and Concrete Research, 34(7), 1219–1227. doi:10.1016/j.cemconres.2003.12.011.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-01

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Heriberto Pérez-Acebo

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message