A Novel Process for Decolmatation of Wells During In Situ Leach Mining of Uranium
Downloads
Doi: 10.28991/CEJ-2025-011-04-011
Full Text: PDF
[2] Cuney, M., Mercadier, J., & Bonnetti, C. (2022). Classification of Sandstone-Related Uranium Deposits. Journal of Earth Science, 33(2), 236–256. doi:10.1007/s12583-021-1532-x.
[3] IAEA. (2023). Annual Report: International Atomic Energy Agency (IAEA), Vienna, Austria. Available online: https://www.iaea.org/publications/reports/annual-report/2023 (accessed on March 2025).
[4] Togizov, K., Kenzhetaev, Z., Temirkhanova, R., Muzapparova, A., Omirgali, A., & Altaibayev, B. (2024). The Influence of the Physicochemical Characteristics of Ores on the Efficiency of Underground Well Leaching of Uranium Deposits in Kazakhstan. Minerals, 14(4), 381. doi:10.3390/min14040381.
[5] Kurmanseiit, M. B., Tungatarova, M. S., Abdullayeva, B. Z., Aizhulov, D. Y., & Shayakhmetov, N. M. (2024). Acceleration of Numerical Modeling of Uranium in Situ Leaching: Application of IDW Interpolation and Neural Networks for Solving the Hydraulic Head Equation. Minerals, 14(10), 1043. doi:10.3390/min14101043.
[6] Ligotskiy, D. N., & Argimbaeva, K. V. (2024). The sectional formation technology of an anthropogenic deposit with its subsequent mining using a hydraulic pull shovel. Sustainable Development of Mountain Territories, 16(1), 111–121. doi:10.21177/1998-4502-2024-16-1-111-121.
[7] Ligotsky, D. N., & Argimbaeva, K. V. (2023). Effect of grain size distribution of tailings during the formation of technogenic deposit on the fragmentation index. Sustainable Development of Mountain Territories, 15(2), 275–282. doi:10.21177/1998-4502-2023-15-2-275-282.
[8] Savov, G. (2024). In situ technology for copper and uranium recovery. Current state of art. Ninth National Scientific and Technical Conference with International Participation "Technologies and Practices in Underground Mining and Mine construction”, 7-10 October, 2024, Devin, Bulgaria.
[9] Rakishev, B. R., Mataev, M. M., Kenzhetaev, Z. S., & Shampikova, A. Kh. (2022). Innovative Methods of Intensification in Situ Leaching Of Uranium in Deposits with Low Filtration Characteristics of Ores. Series of Geology and Technical Sciences, 5(455), 188–206. doi:10.32014/2518-170x.226.
[10] Kenzhetaev1, Z. S., Kuandykov, T. A., Togizov, K. S., Abdraimova, M. R., & Nurbekova, М. A. (2022). Selection Of Rational Parameters For Opening And Drilling Of Technological Wells Underground Uranium Leaching. Series of Geology and Technical Sciences, 3(453), 115–127. doi:10.32014/2022.2518-170x.184.
[11] Alimbaev, T., Mazhitova, Z., Beksultanova, C., & Tentigulkyzy, N. (2020). Activities of mining and metallurgical industry enterprises of the Republic of Kazakhstan: Environmental problems and possible solutions. E3S Web of Conferences, 175, 14019. doi:10.1051/e3sconf/202017514019.
[12] Tsoy, B. V., Myrzakhmetov, S. S., Bekbotaeva, A. A., & Yusupov, K. A. (2022). New geophysical logging techniques for practical problem solving at complex hydrogenetic uranium deposits. Gornyi Zhurnal, 2022(7), 27–31. doi:10.17580/gzh.2022.07.04.
[13] Wang, Y., Song, M., Wei, J., You, J., Chen, S., Wang, S., & Wang, Y. (2023). Strengthening Fe(II)/Fe(III) Dynamic Cycling by Surface Sulfation to Achieve Efficient Electrochemical Uranium Extraction at Ultralow Cell Voltage. Environmental Science & Technology, 57(35), 13258–13266. doi:10.1021/acs.est.3c05133.
[14] Kaksonen, A. H., Lakaniemi, A. M., & Tuovinen, O. H. (2020). Acid and ferric sulfate bioleaching of uranium ores: A review. Journal of Cleaner Production, 264, 121586. doi:10.1016/j.jclepro.2020.121586.
[15] Zhao, Y., Gao, Y., Luo, C., & Liu, J. (2022). Improved uranium leaching efficiency from low-permeability sandstone using low-frequency vibration in the CO2+O2 leaching process. Journal of Rock Mechanics and Geotechnical Engineering, 14(3), 770–780. doi:10.1016/j.jrmge.2021.10.013.
[16] Li, J., Feng, J., Xue, J., Huang, Y., Zhang, Z., Li, H., Chen, Y., Guo, J., Su, X., & Hua, R. (2024). The influence of surfactants on the acid leaching process of a uranium mine in Inner Mongolia. Journal of Radioanalytical and Nuclear Chemistry, 333, 5845–5855. doi:10.1007/s10967-024-09697-y.
[17] Toktaruly, B., Bayeshov, A., Aben, Y., & Suleimenov, S. K. (2022). Effect of Process Solution Saturation with Oxygen on Uranium in-Situ Leaching Performance. Eurasian Mining, 38(2), 50–53. doi:10.17580/em.2022.02.12.
[18] Yussupov, K., Aben, E., Akhmetkanov, D., Aben, K., & Yussupova, S. (2023). Investigation of the solid oxidizer effect on the metal geotechnology efficiency. Mining of Mineral Deposits, 17(4), 12–17. doi:10.33271/mining17.04.012.
[19] Bashilova, E. S., & Baibatsha, A. B. (2022). Geological and geotechnical specifics of uranium production at hydrogenetic deposit Semizbay. Gornyi Zhurnal, 2022(7), 61–66. doi:10.17580/gzh.2022.07.10.
[20] Nicol, M., Ye, K., & Garrard, N. (2025). The combined leaching of copper, gold and uranium in chloride solutions. II. Concentrate leach tests. Hydrometallurgy, 231, 106407. doi:10.1016/j.hydromet.2024.106407.
[21] Alikulov, Sh. Sh., Rabimov, Kh. R., Khalimov, I. U., & Karimov, N. M. (2022). Research and Development of Measures to Prevent Mechanical Colmation of the Form during in-Situ Leaching of Uranium. Gorniy Vestnik Uzbekistana, 2(2(89)). doi:10.54073/gv.2022.2.89.008. (In Russian).
[22] Yusupov, Kh. A., & Omarbekov, E. U. (2020). The effect of "pumping wells” procedure on the flow rate of extraction wells. Complex Use of Mineral Resources, 313(2), 14–18. doi:10.31643/2020/6445.12.
[23] Rakishev, B. R., Mataev, M. M., Kenzhetaev, Zh. S., Togizov, K. S., & Shampikova, A. Kh. (2022). Innovative Methods for Restoring Filtration Characteristics of Borehole Uranium Ores in Kazakhstan's Fields. Series of Geology and Technical Sciences, 4(454), 171–181. doi:10.32014/2022.2518-170x.208.
[24] Cheremisina, O. V., Vasiliev, R. E., Netrusov, A. O., & Ter-Oganesyants, A. K. (2024). Hot Curing and Lime Boiling of High-Arsenic Copper Concentrate Pressure Oxidation Product and Their Effect on Precious Metals Recovery During Subsequent Cyanidation. Tsvetnye Metally, 2024(2), 19–26. doi:10.17580/tsm.2024.02.02.
[25] Cheremisina, O., Vasiliev, R., & Fedorov, A. (2025). Effect of Potassium Salt Addition on Silver Precipitation during Hydrothermal Synthesis of Argentojarosites. Metals, 15(1), 24. doi:10.3390/met15010024.
[26] Aben, E., Yussupova, S., Akhmetkanov, D., Yelzhanov, E., & Sarybayev, N. (2024). Research into Uranium Characteristics and Content in a Pregnant Solution during Leaching with Oxygen Saturation. Civil Engineering Journal (Iran), 10(5), 1606–1615. doi:10.28991/CEJ-2024-010-05-016.
[27] Li, L., Lv, J., Liu, W., Ma, Q., & Tan, W. (2024). Study on uranium leaching from uranium purification residue with ammonium hydrogen fluoride. Journal of Environmental Radioactivity, 276, 107441. doi:10.1016/j.jenvrad.2024.107441.
[28] Silva, R., Couto, D., Tavares, A., & Guimarí£es, L. (2021). Enhanced process route to remove fluorine and uranium from copper concentrades by selective sulfuric acid leaching. Minerals Engineering, 170, 107039. doi:10.1016/j.mineng.2021.107039.
[29] Kenzhetaev, Zh. S., Togizov, K. S., Omirgali, A. K., Aben, E. Kh., & Zhalikyzy, R. (2023). Intensification of Inhibitor-Assisted Uranium ISL Process. Series of Geology and Technical Sciences, 3(459), 108–118. doi:10.32014/2023.2518-170x.303.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
