Correlation of Methylene Blue Value with the Behavior of Natural and Stabilized Expansive Soils

Hasbullah Nawir, Muhammad Fadhl 'Abbas, Dayu Apoji

Abstract


This study investigates the expansive nature of soils from various regions in Indonesia, focusing on their natural and post-stabilization characteristics. The research aims to bridge the gap in understanding the relationship between Methylene Blue Value (MBV) and soil expansivity, both in natural and stabilized states. Soil samples were systematically collected from seven locations across three Indonesian islands and subjected to a range of laboratory tests, including X-ray diffraction analysis, to determine their properties and mineral composition. Compaction and swell tests were conducted to establish Maximum Dry Density (MDD) and Optimum Moisture Content (OMC), as well as swell pressure and free swell parameters. The study further explored soil improvement techniques using cement and lime stabilizers at varying concentrations from 5% to 15%. The results indicated that both cement and lime significantly reduce swell pressure and free swell, with a 15% additive concentration being optimal for mitigation. The analysis revealed a strong correlation between MBV and soil expansivity, with higher MBV values indicating greater expansivity. Regression analysis showed a non-linear relationship between MBV and swell pressure, explaining 97.8% of the variation in swell pressure. Additionally, a linear relationship between MBV and the expansive mineral content was identified, suggesting that the Methylene Blue Test can serve as a cost-effective and rapid substitute for identifying expansive minerals in the soil. The findings highlight the reliability of MBV as an indicator of soil behavior and its potential application in predicting soil expansivity.

 

Doi: 10.28991/CEJ-2025-011-05-020

Full Text: PDF


Keywords


Expansive Mineral; Methylene Blue Value; Swell Pressure; Free Swell; Cement and Lime Stabilization.

References


Setyo Muntohar, A. (2006). Swelling characteristics and improvement of expansive soil with rice husk ash: Expansive Soils. CRC Press, Florida, United States. doi:10.1201/9780203968079.

Jones, L. D., Jefferson, I., Burland, J., Chapman, T., Skinner, H., & Brown, M. (2012). ICE manual of geotechnical engineering. Volume 1, Geotechnical engineering principles, problematic soils and site investigation. The National Academies of Sciences, Engineering, and Medicine, Washington, United States.

Jalal, F. E., Xu, Y., Jamhiri, B., Memon, S. A., & Graziani, A. (2020). On the Recent Trends in Expansive Soil Stabilization Using Calcium-Based Stabilizer Materials (CSMs): A Comprehensive Review. Advances in Materials Science and Engineering, 2020. doi:10.1155/2020/1510969.

Zhang, C., Wang, W., Zhu, Z. D., Li, N., Pu, S. Y., Wan, Y., & Huo, W. W. (2022). Triaxial Mechanical Characteristics and Microscopic Mechanism of Graphene-Modified Cement Stabilized Expansive Soil. KSCE Journal of Civil Engineering, 26(1), 96–106. doi:10.1007/s12205-021-0778-2.

Chen, F. H. (2012). Foundations on Expansive Soils. Found on Expansive Soils. Elsevier Scientific Publishing Company, Amsterdam, Netherlands. doi:10.1139/t89-099.

Holtz, R. D., Kovacs, W. D., & Sheahan, T. C. (2010). An Introduction to Geotechnical Engineering. Prentice-hall, Hoboken, United States.

Nelson, J. D., Chao, K. C. (Geoff), Overton, D. D., & Nelson, E. J. (2015). Foundation Engineering for Expansive Soils. John Wiley & Sons, Hoboken, United States. doi:10.1002/9781118996096.

Nelson, J., & Miller, D. J. (1997). Expansive soils: problems and practice in foundation and pavement engineering. John Wiley & Sons, Hoboken, United States.

Faezehossadat, K., & Jeff, B. (2016). Expansive Soil: Causes and Treatments. I-Manager’s Journal on Civil Engineering, 6(3), 1. doi:10.26634/jce.6.3.8083.

Abdollahi, M., & Vahedifard, F. (2021). Model for Lateral Swelling Pressure in Unsaturated Expansive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 147(10), 04021096. doi:10.1061/(asce)gt.1943-5606.0002605.

Gourley, C. S., Newill, D., & Schreiner, H. D. (2020). Expansive soils: TRL’s research strategy. Engineering Characteristics of Arid Soils. CRC Press, Boca Raton, United States.

Nayak, N. V., & Christensen, R. W. (1971). Swelling characteristics of compacted, expansive soils. Clays and Clay Minerals, 19(4), 251–261. doi:10.1346/CCMN.1971.0190406.

Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behavior. John Wiley & Sons, Hoboken, United States.

Rao, K. S., & Satyadas, G. C. (1987). Swelling potential with cycles of swelling and partial shrinkage. Proceedings 6th International Conference on Expansive Soils, 1-4 December, 1987, New Delhi, India.

Day, R. W. (1994). Swell‐Shrink Behavior of Compacted Clay. Journal of Geotechnical Engineering, 120(3), 618-623. doi:10.1061/(asce)0733-9410(1994)120:3(618).

AI-Homoud, A. S., Basma, A. A., Malkawi, A. I. H., & Al Bashabsheh, M. A. (1995). Cyclic swelling behavior of clays. Journal of Geotechnical Engineering, 121(7), 562–565. doi:10.1061/(ASCE)0733-9410(1995)121:7(562).

Zhou, X., Liu, D., Bu, H., Deng, L., Liu, H., Yuan, P., Du, P., & Song, H. (2018). XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sciences, 3(1), 16–29. doi:10.1016/j.sesci.2017.12.002.

Jalal, F. E., Iqbal, M., Ali Khan, M., Salami, B. A., Ullah, S., Khan, H., & Nabil, M. (2023). Indirect Estimation of Swelling Pressure of Expansive Soil: GEP versus MEP Modelling. Advances in Materials Science and Engineering, 2023, 1827117. doi:10.1155/2023/1827117.

Barbosa, V. H. R., Marques, M. E. S., & Guimarães, A. C. R. (2023). Predicting Soil Swelling Potential Using Soil Classification Properties. Geotechnical and Geological Engineering, 41(8), 4445–4457. doi:10.1007/s10706-023-02525-2.

Jalal, F. E., Xu, Y., Iqbal, M., Javed, M. F., & Jamhiri, B. (2021). Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP. Journal of Environmental Management, 289, 112420. doi:10.1016/j.jenvman.2021.112420.

Ibrahim, H., & Hummadi, R. (2025). Swelling potential and swelling pressure calculation methods: A comprehensive review. Edelweiss Applied Science and Technology, 9(2), 172–192. doi:10.55214/25768484.v9i2.4442.

ASTM D2487-17. (2020). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International, Pennsylvania, United States. doi:10.1520/D2487-17

Verhoef, P. (1992). The methylene blue adsorption test applied to geomaterials. Memoirs of the Centre of Engineering Geology in the Netherlands, Delft University of Technology, Delft, Netherlands.

Türköz, M., & Tosun, H. (2011). The use of methylene blue test for predicting swell parameters of natural clay soils. Scientific Research and Essays, 6(8), 1780-1792.

Çokça, E. (2001). Use of Class C Fly Ashes for the Stabilizationof an Expansive Soil. Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 568–573. doi:10.1061/(asce)1090-0241(2001)127:7(568).

Yukselen, Y., & Kaya, A. (2008). Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Engineering Geology, 102(1–2), 38–45. doi:10.1016/j.enggeo.2008.07.002.

Olaniyan, A., Abu Bakar, A. F., Yusoff, I., Abd Ghani, A., Qaysi, S., Kahal, A., Alfaifi, H., & Alzahrani, H. (2021). Physical, geochemical, and clay mineralogical properties of unstable soil slopes in the Cameron Highlands. Open Geosciences, 13(1), 880–894. doi:10.1515/geo-2020-0281.

Spagnoli, G., & Shimobe, S. (2019). A statistical reappraisal of the relationship between liquid limit and specific surface area, cation exchange capacity and activity of clays. Journal of Rock Mechanics and Geotechnical Engineering, 11(4), 874–881. doi:10.1016/j.jrmge.2018.11.007.

Chiappone, A., Marello, S., Scavia, C., & Setti, M. (2004). Clay mineral characterization through the methylene blue test: Comparison with other experimental techniques and applications of the method. Canadian Geotechnical Journal, 41(6), 1168–1178. doi:10.1139/T04-060.

Suhendra Nugraha, A., Rahardjo, P. P., Hutapea, B. M., & Sadisun, I. A. (2020). Correlation between Plasticity Index and Methylene Blue Value to Determining Soil Classification. IOP Conference Series: Materials Science and Engineering, 852(1), 012012. doi:10.1088/1757-899x/852/1/012012.

Afsha, S., Vaid, S. R., Montoya, M. A., Abdallah, I., & Nazarian, S. (2024). Impact of Clay Contamination on Rutting Performance of Asphalt Mixtures. Transportation Research Record. doi:10.1177/03611981241233287.

Pulat, H. F., & Yukselen-Aksoy, Y. (2015). Influence of Seawater on the Suction and Swelling Behavior of Clayey Soils. Marine Georesources and Geotechnology, 33(5), 466–472. doi:10.1080/1064119X.2014.953233.

Keskin, İ., Salimi, M., Ateyşen, E. Ö., Kahraman, S., & Vakili, A. H. (2023). Comparative Study of Swelling Pressure in Expansive Soils considering Different Initial Water Contents and BOFS Stabilization. Advances in Civil Engineering, 2023. doi:10.1155/2023/4823843.

Farid, A. T. M., & Mosaid, M. (2014). Swelling Potential Prediction of Expansive Soils Using Blue Methylene Value. Soil Behavior and Geomechanics, 25–33. doi:10.1061/9780784413388.003.

Claudia, M. (2000). Predicting swelling/shrinkage potential using the blue methylene method: some examples in Italian clayey soils. ISRM International Symposium, 19–24 November, 2000, Melbourne, Australia.

Forouzan, A. J. (2016). Prediction of swelling behavior of expansive soils using modified free swell index, methylene blue and swell oedometer tests. Master Thesis, Middle East Technical University, Ankara, Türkiye.

Phanikumar, B. R., & Ramanjaneya Raju, E. (2020). Compaction and strength characteristics of an expansive clay stabilised with lime sludge and cement. Soils and Foundations, 60(1), 129–138. doi:10.1016/j.sandf.2020.01.007.

Khemissa, M., & Mahamedi, A. (2014). Cement and lime mixture stabilization of an expansive over consolidated clay. Applied Clay Science, 95, 104–110. doi:10.1016/j.clay.2014.03.017.

Silvani, C., da Silva, J. C., & Guedes, J. P. C. (2024). Sugarcane Bagasse Ash as a Green Stabilizer for Swelling Soil. Geotechnical and Geological Engineering, 42(2), 1459–1470. doi:10.1007/s10706-023-02628-w.

Kleib, J., Lesueur, D., Maherzi, W., & Benzerzour, M. (2024). Carbonation of a lime treated soil subjected to different curing conditions. Transportation Geotechnics, 44, 101174. doi:10.1016/j.trgeo.2023.101174.

Brindley, G. W. (2015). Quantitative X-ray Mineral Analysis of Clays. Crystal Structures of Clay Minerals and Their X-Ray Identification, 411–438, GeoScienceWorld, McLean, United States. doi:10.1180/mono-5.7.

Hubbard, C. R., & Snyder, R. L. (1988). RIR — Measurement and Use in Quantitative XRD. Powder Diffraction, 3(2), 74–77. doi:10.1017/S0885715600013257.

Środoń, J. (2013). Identification and Quantitative Analysis of Clay Minerals. Developments in Clay Science, 5(C), 25–49. doi:10.1016/B978-0-08-098259-5.00004-4.

Abdelkrim, M., & Mohamed, K. (2013). Cement stabilization of compacted expansive clay. The Online Journal of Science and Technology, 3(1), 33-38.

Paikiey, A., & Rabbani, A. (2017). Soil stabilisation using cement. International Journal of Civil Engineering and Technology, 8(6), 316–322. doi:10.1016/0148-9062(77)90919-6.

Mahedi, M., Cetin, B., & White, D. J. (2020). Cement, Lime, and Fly Ashes in Stabilizing Expansive Soils: Performance Evaluation and Comparison. Journal of Materials in Civil Engineering, 32(7), 1–16. doi:10.1061/(asce)mt.1943-5533.0003260.

Al-Gharbawi, A. S. A., Najemalden, A. M., & Fattah, M. Y. (2023). Expansive Soil Stabilization with Lime, Cement, and Silica Fume. Applied Sciences (Switzerland), 13(1), 436. doi:10.3390/app13010436.

Ouendi, F., & Zentar, R. (2023). Investigating the influence of particle size ranges on the physical, mineralogical, and environmental properties of raw marine sediment. Construction and Building Materials, 409. doi:10.1016/j.conbuildmat.2023.133987.

Sposito, G. (2008). The chemistry of soils. Oxford University Press, Oxford, United Kingdom.

Hillier, S. (2000). Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals, 35(1), 291–302. doi:10.1180/000985500546666.

Smaida, A., Mekerta, B., & Gueddouda, M. K. (2021). Physico-mechanical stabilization of a high swelling clay. Construction and Building Materials, 289, 123197. doi:10.1016/j.conbuildmat.2021.123197.

Süt Ünver, İ., Lav, M. A., & Çokça, E. (2021). Improvement of an Extremely Highly Plastic Expansive Clay with Hydrated Lime and Fly Ash. Geotechnical and Geological Engineering, 39(7), 4917–4932. doi:10.1007/s10706-021-01803-1.

Djellali, A., Saghafi, B., Laouar, M.S. (2020). Experimental Correlations for the Swelling Pressure of Expansive Clays in the City of Tebessa, Algeria. CIGOS 2019, Innovation for Sustainable Infrastructure, Lecture Notes in Civil Engineering, 54. Springer, Singapore. doi:10.1007/978-981-15-0802-8_130.

Cokca, E., & Birand, A. (1993). Determination of Cation Exchange Capacity of Clayey Soils by the Methylene Blue Test. Geotechnical Testing Journal, 16(4), 518–524. doi:10.1520/gtj10291j.

Yilmaz, I. (2006). Indirect estimation of the swelling percent and a new classification of soils depending on liquid limit and cation exchange capacity. Engineering Geology, 85(3–4), 295–301. doi:10.1016/j.enggeo.2006.02.005.

Önal, M. (2007). Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments. Applied Clay Science, 37(1–2), 74–80. doi:10.1016/j.clay.2006.12.004.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-020

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Hasbullah Nawir, Muhammad Fadhl 'Abbas, Dayu Apoji

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message