Performance of Auto Glass Powder-High Calcium Fly Ash Geopolymer Mortar Exposed to High Temperature
Downloads
Waste glass enhances concrete sustainability by reducing virgin material use and recycling waste. In traditional concrete, it boosts strength through pozzolanic reactions, while in geopolymer concrete, it improves durability, insulation, and resistance to harsh conditions. This study investigated the viability of substituting auto glass powder (AGP) for high-calcium fly ash (FA) in geopolymer mortar formulations. AGP was utilized as a substitute for high-calcium FA at substitution levels ranging from 0% to 40% by weight. The study examined the physical properties, compressive strength, thermal insulation, and high-temperature performance of the geopolymer composites. The findings indicated that a higher AGP content corresponded with a reduced mortar flow, while increasing the proportion of AGP resulted in the diminished compressive strength of the geopolymer composites. Incorporating 10–20% AGP into the geopolymer mortar gave satisfactory compressive strengths (75–85%) compared to the reference mortar. Thermal conductivity testing indicated that AGP enhanced the thermal insulating properties of mortar. Notably, the compressive strength, after being exposed to 600–900°C, improved with the inclusion of the AGP. Based on XRD, the combeite crystalline phase was present in the mortars containing 20% and 40% AGP after being subjected to 900ºC. This phase contributed to the durability and stability of the material. Thus, it was confirmed that AGP not only served as a beneficial additive but also could play a crucial role in the thermal resilience of geopolymer systems.
Downloads
[1] Du, Y., Yang, W., Ge, Y., Wang, S., & Liu, P. (2021). Thermal conductivity of cement paste containing waste glass powder, metakaolin and limestone filler as supplementary cementitious material. Journal of Cleaner Production, 287, 125018. doi:10.1016/j.jclepro.2020.125018.
[2] Al-jburi Najad, A. A., Hasan Kareem, J. K., Azline, N., & Ostovar, N. (2019). Waste glass as partial replacement in cement –A review. IOP Conference Series: Earth and Environmental Science, 357(1), 012023. doi:10.1088/1755-1315/357/1/012023.
[3] Siddika, A., Hajimohammadi, A., Mamun, Md., Alyousef, R., & Ferdous, W. (2021). Waste Glass in Cement and Geopolymer Concretes: A Review on Durability and Challenges. Polymers, 13(13), 2071. doi:10.3390/polym13132071.
[4] Nasry, O., Samaouali, A., Belarouf, S., Moufakkir, A., Sghiouri El Idrissi, H., Soulami, H., El Rhaffari, Y., Hraita, M., Fertahi, S. E. D., & Hafidi-Alaoui, A. (2021). Thermophysical Properties of Cement Mortar Containing Waste Glass Powder. Crystals, 11(5), 488. doi:10.3390/cryst11050488.
[5] Herbudiman, B., Subari, S., Nugraha, B., Pratiwi, I., Rinovian, A., Widyaningsih, E., Yanti, E. D., Erlangga, B. D., Jakah, J., & Roseno, S. (2024). Effect of Different Ceramic Waste Powder on Characteristics of Fly Ash-Based Geopolymer. Civil Engineering Journal (Iran), 10(2), 431–443. doi:10.28991/CEJ-2024-010-02-06.
[6] Tahwia, A. M., Heniegal, A. M., Abdellatief, M., Tayeh, B. A., & Elrahman, M. A. (2022). Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass. Case Studies in Construction Materials, 17, 1393. doi:10.1016/j.cscm.2022.e01393.
[7] Dey, A., Rumman, R., Wakjira, T. G., Jindal, A., Bediwy, A. G., Islam, M. S., Alam, M. S., Al Martini, S., & Sabouni, R. (2024). Towards net-zero emission: A case study investigating sustainability potential of geopolymer concrete with recycled glass powder and gold mine tailings. Journal of Building Engineering, 86, 108683. doi:10.1016/j.jobe.2024.108683.
[8] Zaetang, Y., Thongrit, P., Phoo-Ngernkham, T., Tippayasam, C., Phungsai, P., Wongsa, A., Sata, V., & Chindaprasirt, P. (2025). High calcium fly ash-auto glass powder alkali-activated pastes. International Journal of Sustainable Engineering, 18(1), 2466475. doi:10.1080/19397038.2025.2466475.
[9] Çelik, A. İ., Tunç, U., Bahrami, A., Karalar, M., Othuman Mydin, M. A., Alomayri, T., & Özkılıç, Y. O. (2023). Use of waste glass powder toward more sustainable geopolymer concrete. Journal of Materials Research and Technology, 24, 8533–8546. doi:10.1016/j.jmrt.2023.05.094.
[10] Dong, W., Li, W., & Tao, Z. (2021). A comprehensive review on performance of cementitious and geopolymeric concretes with recycled waste glass as powder, sand or cullet. Resources, Conservation and Recycling, 172, 105664. doi:10.1016/j.resconrec.2021.105664.
[11] Sheng, Z., Zhu, B., Cai, J., Han, J., Zhang, Y., & Pan, J. (2024). Influence of waste glass powder on printability and mechanical properties of 3D printing geopolymer concrete. Developments in the Built Environment, 20, 100541. doi:10.1016/j.dibe.2024.100541.
[12] Sideris, K. K. (2007). Mechanical Characteristics of Self-Consolidating Concretes Exposed to Elevated Temperatures. Journal of Materials in Civil Engineering, 19(8), 648–654. doi:10.1061/(asce)0899-1561(2007)19:8(648).
[13] Willam, K., Rhee, I., & Xi, Y. (2005). Thermal Degradation of Heterogeneous Concrete Materials. Journal of Materials in Civil Engineering, 17(3), 276–285. doi:10.1061/(asce)0899-1561(2005)17:3(276).
[14] Ulm, F.-J., Acker, P., & Lévy, M. (1999). The “Chunnel” Fire. II: Analysis of Concrete Damage. Journal of Engineering Mechanics, 125(3), 283–289. doi:10.1061/(asce)0733-9399(1999)125:3(283).
[15] Jochem, L. F., Casagrande, C. A., Onghero, L., Venâncio, C., & Gleize, P. J. P. (2021). Effect of partial replacement of the cement by glass waste on cementitious pastes. Construction and Building Materials, 273, 121704. doi:10.1016/j.conbuildmat.2020.121704.
[16] Yong, H. C., Ming, L. Y., Al Bakri Abdullah, M. M., & Hussin, K. (2015). Fire resistant properties of geopolymers: A review. Key Engineering Materials, 660, 39–43. doi:10.4028/www.scientific.net/KEM.660.39.
[17] Mohd Ali, A. Z., & Sanjayan, J. (2016). The spalling of geopolymer high strength concrete wall panels and cylinders under hydrocarbon fire. MATEC Web of Conferences, 47, 2005. doi:10.1051/matecconf/20164702005.
[18] Vickers, L., van Riessen, A., & Rickard, W. D. A. (2015). Fire-Resistant Geopolymers. SpringerBriefs in Materials. Springer Singapore. doi:10.1007/978-981-287-311-8.
[19] Manzoor, T., Bhat, J. A., & Shah, A. H. (2024). Performance of geopolymer concrete at elevated temperature − A critical review. Construction and Building Materials, 420, 135578. doi:10.1016/j.conbuildmat.2024.135578.
[20] Ziejewska, C., Grela, A., Mierzwiński, D., & Hebda, M. (2023). Influence of Waste Glass Addition on the Fire Resistance, Microstructure and Mechanical Properties of Geopolymer Composites. Materials, 16(17), 6011. doi:10.3390/ma16176011.
[21] Yurt, Ü., Çelikten, S., & Atabey, İ. İ. (2024). Post-fire residual mechanical and microstructural properties of waste basalt and glass powder-based geopolymer mortars. Journal of Building Engineering, 94, 109941. doi:10.1016/j.jobe.2024.109941.
[22] Valanides, M., Aivaliotis, K., Oikonomopoulou, K., Fikardos, A., Savva, P., Sakkas, K., & Nicolaides, D. (2024). Geopolymerization of Recycled Glass Waste: A Sustainable Solution for a Lightweight and Fire-Resistant Material. Recycling, 9(1), 16. doi:10.3390/recycling9010016.
[23] Chindaprasirt, P., Lao-un, J., Zaetang, Y., Wongkvanklom, A., Phoo-ngernkham, T., Wongsa, A., & Sata, V. (2022). Thermal insulating and fire resistance performances of geopolymer mortar containing auto glass waste as fine aggregate. Journal of Building Engineering, 60, 105178. doi:10.1016/j.jobe.2022.105178.
[24] Khan, M. N. N., Kuri, J. C., & Sarker, P. K. (2021). Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash-GGBFS mortars. Journal of Building Engineering, 34. doi:10.1016/j.jobe.2020.101934.
[25] Bostanci, L. (2020). Effect of waste glass powder addition on properties of alkali-activated silica fume mortars. Journal of Building Engineering, 29. doi:10.1016/j.jobe.2019.101154.
[26] Naenudon, S., Vilaivong, A., Zaetang, Y., Tangchirapat, W., Wongsa, A., Sata, V., & Chindaprasirt, P. (2022). High flexural strength lightweight fly ash geopolymer mortar containing waste fiber cement. Case Studies in Construction Materials, 16, 1121. doi:10.1016/j.cscm.2022.e01121.
[27] Farhan, N. A., Sheikh, M. N., & Hadi, M. N. S. (2019). Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Construction and Building Materials, 196, 26–42. doi:10.1016/j.conbuildmat.2018.11.083.
[28] Naenudon, S., Wongsa, A., Ekprasert, J., Sata, V., & Chindaprasirt, P. (2023). Enhancing the properties of fly ash-based geopolymer concrete using recycled aggregate from waste ceramic electrical insulator. Journal of Building Engineering, 68. doi:10.1016/j.jobe.2023.106132.
[29] Tho-In, T., Sata, V., Boonserm, K., & Chindaprasirt, P. (2016). Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. Journal of Cleaner Production, 172, 2892–2898. doi:10.1016/j.jclepro.2017.11.125.
[30] Manikandan, P., Natrayan, L., Duraimurugan, S., & Vasugi, V. (2022). Influence of Waste Glass Powder as an Aluminosilicate Precursor in Synthesizing Ternary Blended Alkali-Activated Binder. Silicon, 14(13), 7799–7808. doi:10.1007/s12633-021-01533-2.
[31] Subhani, M., Ali, S., Allan, R., Grace, A., & Rahman, M. (2024). Physical and mechanical properties of self-compacting geopolymer concrete with waste glass as partial replacement of fine aggregate. Construction and Building Materials, 437, 136956. doi:10.1016/j.conbuildmat.2024.136956.
[32] Ranjbar, N., Mehrali, M., Alengaram, U. J., Metselaar, H. S. C., & Jumaat, M. Z. (2014). Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures. Construction and Building Materials, 65, 114–121. doi:10.1016/j.conbuildmat.2014.04.064.
[33] Klima, K. M., Schollbach, K., Brouwers, H. J. H., & Yu, Q. (2022). Thermal and fire resistance of Class F fly ash based geopolymers – A review. Construction and Building Materials, 323. doi:10.1016/j.conbuildmat.2022.126529.
[34] Kuenzel, C., Grover, L. M., Vandeperre, L., Boccaccini, A. R., & Cheeseman, C. R. (2013). Production of nepheline/quartz ceramics from geopolymer mortars. Journal of the European Ceramic Society, 33(2), 251–258. doi:10.1016/j.jeurceramsoc.2012.08.022.
[35] Jiang, X., Xiao, R., Ma, Y., Zhang, M., Bai, Y., & Huang, B. (2020). Influence of waste glass powder on the physico-mechanical properties and microstructures of fly ash-based geopolymer paste after exposure to high temperatures. Construction and Building Materials, 262, 120579. doi:10.1016/j.conbuildmat.2020.120579.
[36] Filho, O. P., Latorre, G. P., & Hench, L. L. (1996). Effect of crystallization on apatite-layer formation of bioactive glass 45S5. Journal of Biomedical Materials Research, 30(4), 509–514. doi:10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-T.
[37] Juraski, A. D. C., Rodas, A. C. D., Elsayed, H., Bernardo, E., Soares, V. O., & Daguano, J. (2017). The in vitro bioactivity, degradation, and cytotoxicity of polymer-derived wollastonite-diopside glass-ceramics. Materials, 10(4), 425. doi:10.3390/ma10040425.
[38] Fakhruddin, A. K., & Mohamad, H. (2022). Effect of sintering temperature on mechanical and bioactivity properties of bioactive glass and cordierite composite. Ceramica, 68(385), 13–23. doi:10.1590/0366-69132022683853141.
[39] Zhang, B., He, P., & Poon, C. S. (2020). Improving the high temperature mechanical properties of alkali activated cement (AAC) mortars using recycled glass as aggregates. Cement and Concrete Composites, 112, 103645. doi:10.1016/j.cemconcomp.2020.103654.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.