Examining the Erosion Resistance of Cement-Bentonite Barriers: Effects of Confining Pressure and GGBS Content
Downloads
This study investigates the erosion resistance of cement-bentonite (CB) barriers, focusing on the role of varying levels of Ground Granulated Blast Furnace Slag (GGBS) content and confining pressure, crucial for infrastructure such as dams and levees. Employing a bespoke modified triaxial erosion testing setup, the research assesses how different confining pressures, GGBS proportions, and curing periods impact the erosion resistance of CB materials under varying stress conditions. Results demonstrate that increasing GGBS proportions enhances erosion resistance by improving the CB matrix microstructure, while higher confining pressures generally increase resistance. However, combinations of high confining pressure and erosive force can lead to barrier material failure, with buckling failure occurring at elevated pressures (100 kPa and above), highlighting a trade-off between enhancing erosion resistance and maintaining structural stability. Extended curing periods allow for material strength development, enhancing stability, yet delayed erosion phases at higher confining pressures and longer curing durations suggest gradual crack formation, potentially leading to hydraulic fracturing. This underscores the need for meticulous design considerations regarding load conditions due to significant failure modes such as buckling. The findings emphasize that the strategic combination of GGBS content, confining pressure, and curing period is crucial in optimizing barrier performance, highlighting the importance of selecting optimal material formulations and operational parameters to maximize erosion resistance and ensure the longevity and safety of civil engineering structures.
Downloads
[1] Garvin, S. L., & Hayles, C. S. (1999). Chemical compatibility of cement-bentonite cut-off wall material. Construction and Building Materials, 13(6), 329–341. doi:10.1016/S0950-0618(99)00024-0.
[2] Flessati, L., Vecchia, G. Della, & Musso, G. (2023). Effects of curing on the hydro-mechanical behaviour of cement-bentonite mixtures for cut-off walls. Construction and Building Materials, 383. doi:10.1016/j.conbuildmat.2023.131392.
[3] Thapa, I., Kumar, N., Ghani, S., Kumar, S., & Gupta, M. (2024). Applications of bentonite in plastic concrete: a comprehensive study on enhancing workability and predicting compressive strength using hybridized AI models. Asian Journal of Civil Engineering, 25(4), 3113–3128. doi:10.1007/s42107-023-00966-x.
[4] Liu, M., Hu, Y., Lai, Z., Yan, T., He, X., Wu, J., Lu, Z., & Lv, S. (2020). Influence of various bentonites on the mechanical properties and impermeability of cement mortars. Construction and Building Materials, 241, 118015. doi:10.1016/j.conbuildmat.2020.118015.
[5] Waqas, R. M., Butt, F., Danish, A., Alqurashi, M., Mosaberpanah, M. A., Masood, B., & Hussein, E. E. (2021). Influence of bentonite on mechanical and durability properties of high-calcium fly ash geopolymer concrete with natural and recycled aggregates. Materials, 14(24), 7790. doi:10.3390/ma14247790.
[6] Fode, T. A., Jande, Y. A. C., & Kivevele, T. (2024). Effects of raw and different calcined bentonite on durability and mechanical properties of cement composite material. Case Studies in Construction Materials, 20, e03012. doi:10.1016/j.cscm.2024.e03012.
[7] Nugroho, S. A., Wardani, S. R., Muntohar, A. S., & Satibi, S. (2024). Effect of Coal Combustion Waste on Cement-Treated Clay. Civil Engineering Journal, 10(11), 3603-3612. doi:10.28991/CEJ-2024-010-11-010.
[8] Wei, J., & Gencturk, B. (2019). Hydration of ternary Portland cement blends containing metakaolin and sodium bentonite. Cement and Concrete Research, 123, 105772. doi:10.1016/j.cemconres.2019.05.017.
[9] Alaneme, G. U., & Mbadike, E. M. (2021). Optimisation of Strength Development of Bentonite and Palm Bunch Ash Concrete Using Fuzzy Logic. International Journal of Sustainable Engineering, 14(4), 835–851. doi:10.1080/19397038.2021.1929549.
[10] Lemonis, N., Tsakiridis, P. E., Katsiotis, N. S., Antiohos, S., Papageorgiou, D., Katsiotis, M. S., & Beazi-Katsioti, M. (2015). Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan. Construction and Building Materials, 81, 130–139. doi:10.1016/j.conbuildmat.2015.02.046.
[11] Soga, K., Joshi, K., & Evans, J. C. (2013). Cement bentonite cutoff walls for polluted sites. Coupled phenomena in environmental geotechnics. Taylor Francis Group, London, United Kingdom. doi:10.1201/b15004-15.
[12] Musso, G., Vespo, V. S., Guida, G., & Della Vecchia, G. (2023). Hydro-mechanical behaviour of a cement–bentonite mixture along evaporation and water-uptake controlled paths. Geomechanics for Energy and the Environment, 33, 100413. doi:10.1016/j.gete.2022.100413.
[13] Rice, J. D., & Duncan, J. M. (2010). Deformation and Cracking of Seepage Barriers in Dams due to Changes in the Pore Pressure Regime. Journal of Geotechnical and Geoenvironmental Engineering, 136(1), 16–25. doi:10.1061/(asce)gt.1943-5606.0000241.
[14] Xu, B., Zou, D., Kong, X., Hu, Z., & Zhou, Y. (2015). Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model. Computers and Geotechnics, 65, 258–265. doi:10.1016/j.compgeo.2015.01.003.
[15] Sun, W., Zhang, G., & Zhang, Z. (2021). Damage analysis of the cut-off wall in a landslide dam based on centrifuge and numerical modeling. Computers and Geotechnics, 130, 103936. doi:10.1016/j.compgeo.2020.103936.
[16] Wen, L., Cao, W., & Li, Y. (2023). Behavior of a Concrete-Face Rockfill Dam Cutoff Wall Considering the Foundation Seepage–Creep Coupling Effect. International Journal of Geomechanics, 23(5), 4023031. doi:10.1061/ijgnai.gmeng-8177.
[17] Cao, B., Chen, J., & Al-Tabbaa, A. (2021). Crack-resistant cement–bentonite cut-off wall materials incorporating superabsorbent polymers. Canadian Geotechnical Journal, 58(6), 800–810. doi:10.1139/cgj-2020-0181.
[18] Garner, S. J., & Fannin, R. J. (2010). Understanding internal erosion: a decade of research following a sinkhole event. The international journal on hydropower & dams, 17(3), 93.
[19] Chowdhury, K., Beswick, M., Waltz, J., Soga, K., Millet, R., Williams, T., & Orgill, S. (2020). Seepage cutoff walls: Lessons learned, implemented, and to be implemented. Association of State Dam Safety Officials Annual Conference, Dam Safety 21-25 September, 2020, Online.
[20] Zhang, Y., Cui, L., Jeng, D. S., Wang, Z., & Zhai, H. (2025). Erosion–Seepage System (ESS) for Flow-Induced Soil Erosion Rate with Seepage. Journal of Marine Science and Engineering, 13(1), 152. doi:10.3390/jmse13010152.
[21] Zhao, T., Wu, W., Fu, C., & Huo, D. (2024). Simulation of landslide dam failure due to overtopping considering vertical soil particles distribution. Geomatics, Natural Hazards and Risk, 15(1), 2366371. doi:10.1080/19475705.2024.2366371.
[22] Pereira, G. (2024). Cutoffs in dams: overview and recent developments. Geotechnical Engineering Challenges to Meet Current and Emerging Needs of Society, 187–196, CRC Press, Boca Raton, United States. doi:10.1201/9781003431749-13.
[23] Wang, J., Chai, J., Xu, Z., Geng, K., & Zhang, P. (2024). A review of barrier properties of polymer-modified bentonite applied to vertical cutoff walls under dry-wet cycling and chemical erosion. Journal of Water Process Engineering, 65, 105759. doi:10.1016/j.jwpe.2024.105759.
[24] Alrowais, R., Alwushayh, B., Bashir, M. T., Nasef, B. M., Ghazy, A., & Elkamhawy, E. (2023). Modeling and Analysis of Cutoff Wall Performance Beneath Water Structures by Feed-Forward Neural Network (FFNN). Water (Switzerland), 15(21), 3870. doi:10.3390/w15213870.
[25] Beier, H., & Strobl, T. (1985). Resistance against internal erosion of various types of cutoff walls in dam construction. Proceedings of the 15th ICOLD Congress, 24-28 June, 1985, Lausanne, Switzerland.
[26] Braithwaite, N. E. (2013). Laboratory modeling of erosion potential of seepage barrier material. Master Thesis, Utah State University, Logan, United States.
[27] Alonso, U., Missana, T., Fernández, A. M., & García-Gutiérrez, M. (2018). Erosion behaviour of raw bentonites under compacted and confined conditions: Relevance of smectite content and clay/water interactions. Applied Geochemistry, 94, 11–20. doi:10.1016/j.apgeochem.2018.04.012.
[28] Wang, Z., Zhao, B., & Royal, A. C. D. (2017). Investigation of Erosion of Cement-Bentonite via Piping. Advances in Materials Science and Engineering, 2017. doi:10.1155/2017/1762042.
[29] Garand, P., Bigras, A., Rattue, D. A., Hammamji, Y., & Saucet, J. P. (2006). Erosion resistance of plastic concrete. Transactions of the International Congress on Large Dams, 18-23 June, 2006, Barcelona, Spain.
[30] Walenna, M. A., Royal, A. C. D., Jefferson, I., & Ghataora, G. S. (2018). Investigating the erosion resistance of cement-bentonite barrier material using hole erosion test. Scour and Erosion IX, 31–32, CRC Press, Boca Raton, United States. doi:10.1201/9780429020940-6.
[31] Sherard, J. L., Dunnigan, L. P., & Decker, R. S. (1976). Identification and nature of dispersive soils. Journal of the Geotechnical Engineering Division, 102(4), 287-301. doi:10.1061/ajgeb6.0000256.
[32] Nearing, M. A., Simanton, J. R., Norton, L. D., Bulygin, S. J., & Stone, J. (1999). Soil erosion by surface water flow on a stony, semiarid hillslope. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 24(8), 677-686. doi:10.1002/(SICI)1096-9837(199908)24:8<677::AID-ESP981>3.0.CO;2-1.
[33] Hanson, G. J. (1990). Surface erodibility of earthen channels at high stresses. Part II - Developing an in situ testing device. Transactions of the American Society of Agricultural Engineers, 33(1), 132–137. doi:10.13031/2013.31306.
[34] Evans, J. (1994). Hydraulic Conductivity of Vertical Cutoff Walls. Hydraulic Conductivity and Waste Contaminant Transport in Soil, 79–94, The American Society of Mechanical Engineers, New York, United States. doi:10.1520/stp23885s.
[35] Hanson, G. J., & Cook, K. R. (2004). Apparatus, Test Procedures, and Analytical Methods to Measure Soil Erodibility in Situ. Applied Engineering in Agriculture, 20(4), 455–462. doi:10.13031/2013.16492.
[36] Wan, C. F., & Fell, R. (2004). Investigation of Rate of Erosion of Soils in Embankment Dams. Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 373–380. doi:10.1061/(asce)1090-0241(2004)130:4(373).
[37] Burns, B., Barker, R., & Ghataora, G. S. (2006). Investigating internal erosion using a miniature resistivity array. NDT & E International, 39(2), 169–174. doi:10.1016/j.ndteint.2004.12.009.
[38] Briaud, J. L., Ting, F. C. K., Chen, H. C., Cao, Y., Han, S. W., & Kwak, K. W. (2001). Erosion Function Apparatus for Scour Rate Predictions. Journal of Geotechnical and Geoenvironmental Engineering, 127(2), 105–113. doi:10.1061/(asce)1090-0241(2001)127:2(105).
[39] Marot, D., Regazzoni, P.-L., & Wahl, T. (2011). Energy-Based Method for Providing Soil Surface Erodibility Rankings. Journal of Geotechnical and Geoenvironmental Engineering, 137(12), 1290–1293. doi:10.1061/(asce)gt.1943-5606.0000538.
[40] Chang, D. (2012). Internal erosion and overtopping erosion of earth dams and landslide dams. Ph.D. Thesis, Hong Kong University of Science and Technology, Hong Kong.
[41] Chevalier, C., Haghighi, I., & Herrier, G. (2012). Resistance to erosion of lime treated soils: a complete parametric study in laboratory. Proceedings of the 6th International Conference on Scour and Erosion, 27-31 August, Paris, France.
[42] de Baecque, M., Chevalier, C., Palma-Lopes, S., Le Feuvre, M., Reiffsteck, P., Charles, I., & Herrier, G. (2017). Resistance to erosion of lime treated soils for application to coastal dikes. 25th meeting of the European Working Group on Internal Erosion in Embankment Dams and their Foundations, 4-7 September, 2017, Delft, Netherlands.
[43] Haghighi, I., Chevalier, C., Duc, M., Guédon, S., & Reiffsteck, P. (2013). Improvement of Hole Erosion Test and Results on Reference Soils. Journal of Geotechnical and Geoenvironmental Engineering, 139(2), 330–339. doi:10.1061/(asce)gt.1943-5606.0000747.
[44] Říha, J., & Jandora, J. (2014). Pressure conditions in the hole erosion test. Canadian Geotechnical Journal, 52(1), 114–119. doi:10.1139/cgj-2013-0474.
[45] Mehenni, A., Cuisinier, O., & Masrouri, F. (2016). Impact of Lime, Cement, and Clay Treatments on the Internal Erosion of Compacted Soils. Journal of Materials in Civil Engineering, 28(9). doi:10.1061/(asce)mt.1943-5533.0001573.
[46] Fattahi, S. M., Soroush, A., & Shourijeh, P. T. (2017). The hole erosion test: A comparison of interpretation methods. Geotechnical Testing Journal, 40(3), 494–505. doi:10.1520/GTJ20160069.
[47] Royal, A. C. D., Opukumo, A. W., Qadr, C. S., Perkins, L. M., & Walenna, M. A. (2018). Deformation and Compression Behaviour of a Cement–Bentonite Slurry for Groundwater Control Applications. Geotechnical and Geological Engineering, 36(2), 835–853. doi:10.1007/s10706-017-0359-9.
[48] Opdyke, S. M., & Evans, J. C. (2005). Slag-Cement-Bentonite Slurry Walls. Journal of Geotechnical and Geoenvironmental Engineering, 131(6), 673–681. doi:10.1061/(asce)1090-0241(2005)131:6(673).
[49] Walenna, M. A. (2023). Investigating the Consolidation Behaviour of Cement-Bentonite Barrier Materials Containing PFA and GGBS. Civil Engineering Journal (Iran), 9(3), 512–530. doi:10.28991/CEJ-2023-09-03-02.
[50] TOLSA. (2008). Technical Data Sheet: Berkbent Bentonite 163. TOLSA, Madrid, Spain.
[51] BS EN 197-1. (2019). Cement - Composition, specifications and conformity criteria for common cements. British Standard Institution, London, United Kingdom.
[52] Royal, A. C. D., Makhover, Y., Moshirian, S., & Hesami, D. (2013). Investigation of Cement-Bentonite Slurry Samples Containing PFA in the UCS and Triaxial Apparatus. Geotechnical and Geological Engineering, 31(2), 767–781. doi:10.1007/s10706-013-9626-6.
[53] Jefferis, S. (2012). Cement-Bentonite Slurry Systems. Proceedings of the Fourth International Conference on Grouting and Deep Mixing, February 15-18, 2012, 1–24. doi:10.1061/9780784412350.0001.
[54] Ke, L., & Takahashi, A. (2014). Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil. Soils and Foundations, 54(4), 713–730. doi:10.1016/j.sandf.2014.06.024.
[55] Fan, H., Dhir, R. K., & Hewlett, P. C. (2021). GGBS Use in Concrete as Cement Constituent: Strength Development and Sustainability Effects-Part 1. Magazine of Concrete Research, 1–41. doi:10.1680/jmacr.21.00009.
[56] Munjal, P., Hau, K. K., & Hon Arthur, C. C. (2021). Effect of GGBS and curing conditions on strength and microstructure properties of oil well cement slurry. Journal of Building Engineering, 40, 102331. doi:10.1016/j.jobe.2021.102331.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.