Shear Strength of One-Way Slabs Subjected to Concentrated Loads
Downloads
Reinforced concrete (RC) one-way slabs without transverse reinforcement are found extensively in bridge constructions. In the presence of concentrated loads (CLs) close to the supports, the shear strength (SS) of such slabs is usually determined using design expressions provided by the codes of practice that were derived originally from tests performed on beams or one-way slabs that were loaded along their entire width, which are inconsistent with the actual shear failure mechanism of one-way slabs under CLs. This paper presents an empirical SS model developed using the gene expression programming method (GEP), where the SS is related to six influencing parameters. The proposed model is derived employing the test results of 238 RC one-way slabs that experienced shear failure from the literature. The accuracy of the proposed model is measured using several statistical indices and compared with the existing shear design methods. The GEP model agreed favorably with the test results. The GEP model was also employed to conduct a parametric study for further validation and sensitivity analysis to define the contribution of input parameters to the SS. The parametric study demonstrated the efficiency of the GEP model in replicating the physical behavior, and the sensitivity analysis revealed that the SS is sensitive to the concrete strength and the shear span-effective depth ratio.
Downloads
[1] Natário, F., Fernández Ruiz, M., & Muttoni, A. (2014). Shear strength of RC slabs under concentrated loads near clamped linear supports. Engineering Structures, 76, 10–23. doi:10.1016/j.engstruct.2014.06.036.
[2] Lantsoght, E. O. L., Cor van der Veen, & Walraven, J. C. (2013). Shear in one-way slabs under concentrated load close to support. ACI Structural Journal, 110(2), 275–284. doi:10.14359/51684407.
[3] Reissen, K., Classen, M., & Hegger, J. (2018). Shear in reinforced concrete slabs—Experimental investigations in the effective shear width of one-way slabs under concentrated loads and with different degrees of rotational restraint. Structural Concrete, 19(1), 36–48. doi:10.1002/suco.201700067.
[4] Lantsoght, E. O. L., van der Veen, C., Walraven, J., & de Boer, A. (2013). Recommendations for the Shear Assessment of Reinforced Concrete Slab Bridges from Experiments. Structural Engineering International, 23(4), 418–426. doi:10.2749/101686613x13627347100239.
[5] Halvonik, J., Vidaković, A., & Vida, R. (2020). Shear Capacity of Clamped Deck Slabs Subjected to a Concentrated Load. Journal of Bridge Engineering, 25(7), 04020037. doi:10.1061/(asce)be.1943-5592.0001564.
[6] Henze, L., Rombach, G. A., & Harter, M. (2020). New approach for shear design of reinforced concrete slabs under concentrated loads based on tests and statistical analysis. Engineering Structures, 219. doi:10.1016/j.engstruct.2020.110795.
[7] ACI 318-25. (2019). ACI 318-25: Building Code Requirements for Structural Concrete (ACI 318-25) and Commentary (ACI 318R-19). American Concrete Institute (ACI), Farmington Hills, United States.
[8] EN 1992-1-1: 2004. (2004). Eurocode 2 Design of Concrete Structures—Part 1-1 General Rules and Rules for Buildings. European Committee for Standardization, Brussel, Belgium.
[9] AASHTO. (2007). LRFD bridge design specifications. American Association of State Highway and Transportation Officials, Washington, United States.
[10] Fédération Internationale du Béton (fib). (2012). fib model code for concrete structures. Bulletin 65, Ernst & Sohn Fédération Internationale du Béton, Lausanne, Switzerland.
[11] Muttoni, A., & Ruiz, M. F. (2008). Shear strength of members without transverse reinforcement as function of critical shear crack width. ACI Structural Journal, 105(2), 163–172. doi:10.14359/19731.
[12] Lantsoght, E. O. L., van der Veen, C., Walraven, J., & de Boer, A. (2015). Experimental investigation on shear capacity of reinforced concrete slabs with plain bars and slabs on elastomeric bearings. Engineering Structures, 103, 1–14. doi:10.1016/j.engstruct.2015.08.028.
[13] Lantsoght, E. O. L., van der Veen, C., Walraven, J. C., & de Boer, A. (2015). Transition from one-way to two-way shear in slabs under concentrated loads. Magazine of Concrete Research, 67(17), 909–922. doi:10.1680/macr.14.00124.
[14] Bui, T. T., Abouri, S., Limam, A., NaNa, W. S. A., Tedoldi, B., & Roure, T. (2017). Experimental investigation of shear strength of full-scale concrete slabs subjected to concentrated loads in nuclear buildings. Engineering Structures, 131, 405–420. doi:10.1016/j.engstruct.2016.10.045.
[15] Furuuchi, H., Takahashi, Y., Ueda, T., & Kakuta, Y. (1998). Effective width for shear failure of RC deep slabs. Transactions of the Japan Concrete Institute, 20, 209–216.
[16] Lantsoght, E. O. L., Van Der Veen, C., De Boer, A., & Walraven, J. C. (2014). Influence of width on shear capacity of reinforced concrete members. ACI Structural Journal, 111(6), 1441–1449. doi:10.14359/51687107.
[17] Lantsoght, E. (2012). Shear in reinforced concrete slabs under concentrated loads close to the support. Ph.D. Thesis, Delft University of Technology, Delft, Netherlands.
[18] Lantsoght, E. O. L., van der Veen, C., de Boer, A., & Walraven, J. (2015). Proposal for the extension of the Eurocode shear formula for one-way slabs under concentrated loads. Engineering Structures, 95, 16–24. doi:10.1016/j.engstruct.2015.03.055.
[19] Lantsoght, E. O. L., Van Der Veen, C., De Boer, A., & Alexander, S. D. B. (2017). Extended strip model for reinforced concrete slabs under concentrated loads. ACI Materials Journal, 114(2), 565–574. doi:10.14359/51689462.
[20] Abambres, M., & Lantsoght, E. O. L. (2020). Neural network-based formula for shear capacity prediction of one-way slabs under concentrated loads. Engineering Structures, 211(110501). doi:10.1016/j.engstruct.2020.110501.
[21] Kongwang, N., Takeda, K., Sato, Y., & Pheinsusom, P. (2024). Fatigue life prediction method for reinforced concrete deck slabs subjected to repeated moving wheel loads and failing in shear. Structural Concrete, 25(6), 4324-4339. doi:10.1002/suco.202400114.
[22] Fernández, P. G., Marí, A., & Oller, E. (2023). Theoretical prediction of the shear strength of reinforced concrete slabs under concentrated loads close to linear supports. Structure and Infrastructure Engineering, 19(7), 890–903. doi:10.1080/15732479.2021.1988990.
[23] Huber, T., Huber, P., Wolfger, H., Vill, M., & Kollegger, J. (2024). Shear tests on full-scale bridge slabs with bent-up reinforcing bars. Engineering Structures, 308, 117966. doi:10.1016/j.engstruct.2024.117966.
[24] Lipari, A. (2024). A review of design and assessment methods for skew concrete slabs. Bridge Maintenance, Safety, Management, Digitalization and Sustainability, 3904–3912, CRC Press, Boca Raton, United States. doi:10.1201/9781003483755-461.
[25] Setiawan, A., Cantone, R., Fernández Ruiz, M., & Muttoni, A. (2024). Verification of shear failures of cantilever bridge deck slabs subjected to concentrated loads. Engineering Structures, 303(117491). doi:10.1016/j.engstruct.2024.117491.
[26] Abdulkathum, S., Al-Shaikhli, H. I., Al-Abody, A. A., & Hashim, T. M. (2023). Statistical Analysis Approaches in Scour Depth of Bridge Piers. Civil Engineering Journal (Iran), 9(1), 143–153. doi:10.28991/CEJ-2023-09-01-011.
[27] Al-Bayati, A. F. (2023). Shear Strength of Circular and Rectangular Reinforced Concrete Columns. KSCE Journal of Civil Engineering, 27(5), 2073–2088. doi:10.1007/s12205-023-0027-y.
[28] Chen, G., Cheng, X., Diao, M., Li, Y., & Lu, Y. (2025). Progressive collapse resistance of one-way wet-connected precast concrete beam-slab-column substructures: Experimental and numerical investigations. Engineering Structures, 344, 121288. doi:10.1016/j.engstruct.2025.121288.
[29] Shrif, M., Al-Sadoon, Z. A., Barakat, S., Habib, A., & Mostafa, O. (2024). Optimizing Gene Expression Programming to Predict Shear Capacity in Corrugated Web Steel Beams. Civil Engineering Journal, 10(5), 1370-1385. doi:10.28991/CEJ-2024-010-05-02.
[30] Fang, I. K., Tsui, C. K. T., Burns, N. H., & Klingner, R. E. (1990). Load capacity of isotropically reinforced, cast-in-place and precast panel bridge decks. PCI Journal, 35(4), 104–113. doi:10.15554/pcij.07011990.104.113.
[31] Regan, P. E., & Rezai-Jorabi, H. (1988). Shear Resistance of One-Way Slabs under Concentrated Loads. ACI Structural Journal, 85(2), 150–157. doi:10.14359/2704.
[32] Vaz Rodrigues, R., Muttoni, A., & Burdet, O. (2006). Large scale tests on bridge slabs cantilevers subjected to traffic loads. Proceedings of the 2nd international Congress, Fédération Internationale du Béton, 5-8 June, 2006, Naples, Italy.
[33] Kani, M. W., Huggins, M. W., & Wittkopp, R. R. (1979). Kani on shear in reinforced concrete. University of Toronto Press, Toronto, Canada.
[34] Olonisakin, A. A., & Alexander, S. D. B. (1999). Mechanism of shear transfer in a reinforced concrete beam. Canadian Journal of Civil Engineering, 26(6), 810–817. doi:10.1139/l99-044.
[35] Regan, P. E. (1982). Shear resistance of concrete slabs at concentrated loads close to supports. Polytechnic of Central London, London, United Kingdom.
[36] Reißen, K., & Hegger, J. (2013). Experimental investigations on the effective width for shear force of single-span roadway slabs. Beton- Und Stahlbetonbau, 108(2), 96–103. doi:10.1002/best.201200064. (In German).
[37] Reißen, K., & Hegger, J. (2013). Experimental investigations into the shear force behavior of cantilevered road slabs under wheel loads. Beton- Und Stahlbetonbau, 108(5), 315–324. doi:10.1002/best.201200072. (In German).
[38] Graf, O. (1933). Experiments on the capacity of concrete slabs subjected to concentrated loads close to a support. Deutscher Ausschuss für Eisenbeton, 73, 10-16. (In German).
[39] Heger, F. J., & McGrath, T. J. (1982). Design method for reinforced concrete pipe and box sections. Simpson Gumpertz and Heger, Inc, Waltham, United States.
[40] Coin A, & Thonier, H. (2007). Shear experiments on reinforced concrete slabs. Annales du baˆtiment et des travaux publics 59(1), 7-16. (In French).
[41] Rajagopalan, K. S., & Ferguson, P. M. (1968). Exploratory shear tests emphasizing percentage of longitudinal steel. Journal Proceedings 65(8), 634-638. doi:10.14359/7501.
[42] Serna-Ros, P., Fernandez-Prada, M. A., Miguel-Sosa, P., & Debb, O. A. R. (2002). Influence of stirrup distribution and support width on the shear strength of reinforced concrete wide beams. Magazine of Concrete Research, 54(3), 181–191. doi:10.1680/macr.2002.54.3.181.
[43] Leonhardt, F., & Walther, R. (1962). The Stuttgart shear tests, 1961: contributions to the treatment of the problems of shear in reinforced concrete construction. Cement & Concrete Association, London, United Kingdom.
[44] Aster, H., & Koch, R. (1974). Shear capacity of thick reinforced concrete slabs. Beton-U Stahlbetonbau, 69(11). (In German).
[45] Cullington, D. W., Daly, A. F., & Hill, M. E. (1996). Assessment of reinforced concrete bridges: Collapse tests on Thurloxton underpass. Bridge Management: Proceedings of the Third International Conference, 14-17 April 1996, Guildford, United Kingdom.
[46] Cossio R, D., J, M., P.L, G., & J.G, M. (1962). Shear and Diagonal Tension. ACI Journal Proceedings, 59(3), 1323–1339. doi:10.14359/7921.
[47] Reineck, K. H., Koch, R., & Schlaich, J. (1978). Shear Tests on Reinforced concrete beams with axial compression for offshore structures. Institut für Massivbau, Universität Stuttgart, Stuttgart, Germany.
[48] Jäger, T. (2002). Shear strength and deformation capacity of reinforced concrete slabs. Proceedings of the 4th International Ph.D. Symposium in Civil Engineering. Munich, Germany.
[49] Ja¨ger T. (2005). Experiments on the Shear and Deformation Capacity of Reinforced Concrete Slabs. ETH Zurich, Zurich, Switzerland. (In German).
[50] Ja¨ger T. (2007). Shear and Deformation Capacity of Reinforced Concrete Slabs. PhD Thesis, ETH Zurich, Zurich, Switzerland. (In German).
[51] Rombach, G., & Latte, S. (2008). Shear resistance of bridge decks without shear reinforcement. Tailor Made Concrete Structures, 125–125. doi:10.1201/9781439828410.ch86.
[52] Rombach, G. A., & Latte, S. (2008). Shear resistance of bridge decks without shear reinforcement. Proceedings of the International fib Symposium, 19-21 May 2008, Amsterdam, Netherlands.
[53] Lantsoght, E. O. L., Van Der Veen, C., Walraven, J. C., & De Boer, A. (2015). Database of wide concrete members failing in shear. Magazine of Concrete Research, 67(1), 33–52. doi:10.1680/macr.14.00137.
[54] Al-Bayati, A. F. (2023). Torsion Strength Prediction of Reinforced Concrete Beams. International Review of Civil Engineering, 14(2), 153–163. doi:10.15866/irece.v14i2.22853.
[55] Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. Biosystems, 33(1), 69–73. doi:10.1016/0303-2647(94)90062-0.
[56] Ferreira, C. (2002). Gene Expression Programming in Problem Solving. Soft Computing and Industry, Springer, London, United Kingdom. doi:10.1007/978-1-4471-0123-9_54.
[57] Smith, G. N. (1986). Probability and Statistics in Civil Engineering. Collins professional and technical books, London, United Kingdom.
[58] Patiño-Mora, K., Santa María, H., & Jünemann, R. (2025). Experimental assessment of reinforced concrete squat walls with high-strength lightweight concrete. Materials and Structures, 58(7), 1-18. doi:10.1617/s11527-025-02756-0.
[59] Conforti, A., Minelli, F., & Plizzari, G. A. (2017). Influence of width-to-effective depth ratio on shear strength of reinforced concrete elements without web reinforcement. ACI Structural Journal, 114(4), 995–1006. doi:10.14359/51689681.
[60] Al-Bayati, A. F., & Taki, Z. N. M. (2024). Shear strength prediction of steel fiber reinforced concrete beams without transverse reinforcements. Asian Journal of Civil Engineering, 25(2), 1857–1875. doi:10.1007/s42107-023-00882-0.
[61] Theodorakopoulos, D. D., & Swamy, R. N. (2002). Ultimate punching shear strength analysis of slab–column connections. Cement and Concrete Composites, 24(6), 509–521. doi:10.1016/s0958-9465(01)00067-1.
[62] Al-Bayati, A. F. (2018). Alternative Strut and Tie Model for Reinforced Concrete Deep Beams. Al-Nahrain Journal for Engineering Sciences, 21(1), 86. doi:10.29194/njes21010086.
[63] Gandomi, A. H., Yun, G. J., & Alavi, A. H. (2013). An evolutionary approach for modeling of shear strength of RC deep beams. Materials and Structures/Materiaux et Constructions, 46(12), 2109–2119. doi:10.1617/s11527-013-0039-z.
[64] de Sousa, A. M. D., Lantsoght, E. O. L., & El Debs, M. K. (2021). One-way shear strength of wide reinforced concrete members without stirrups. Structural Concrete, 22(2), 968–992. doi:10.1002/suco.202000034.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















