Effect of Axial Load on the Seismic Performance of Steel Reinforced Concrete Beam-Column Joint
Downloads
Steel-reinforced concrete (SRC) provides numerous advantages, such as enhanced energy dissipation, ductility, stiffness, and strength, particularly in seismic performance. Several studies on the effect of axial loads on columns found that axial loads have an insignificant influence on column capacity, though they influence long-term performance. Beam-column joint elements are among the critical components that determine the seismic behavior of a structure. Inaccurate design of these joints can lead to fatal structural damage, potentially causing structural collapse. This study aimed to perform a numerical analysis of various joint configurations under cyclic and axial loads to identify models with the best seismic performance that consisted of four models using different SRC length parameters. The research used nonlinear finite element methods with the ABAQUS software, which enables detailed simulations of joint behavior, including predictions of failure mechanisms that are difficult to observe in experimental testing. The results of the analysis showed that the CS-02 model demonstrated the best seismic performance. Axial load increased the capacity in all models, improved energy dissipation in the RC model, slightly reduced dissipation in CS models, and caused different rotational behavior across models.
Downloads
[1] Hai, L., Luo, J., Yang, L., & Ban, H. (2022). Experimental study on monotonic and cyclic behaviour of deconstructable beam-to-column composite joints. Engineering Structures, 272(April), 114990. doi:10.1016/j.engstruct.2022.114990.
[2] Mostafa, M. M. A., Wu, T., Liu, X., & Fu, B. (2019). The Composite Steel Reinforced Concrete Column Under Axial and Seismic Loads: A Review. International Journal of Steel Structures, 19(6), 1969–1987. doi:10.1007/s13296-019-00257-9.
[3] Le, D. D., Nguyen, X. H., & Nguyen, Q. H. (2020). Cyclic testing of a composite joint between a reinforced concrete column and a steel beam. Applied Sciences (Switzerland), 10(7), 2385. doi:10.3390/app10072385.
[4] Shehab, B. A., & Ekmekyapar, T. (2021). Joints behaviour of through steel beam to composite column connection: Experimental study. Marine Structures, 76(December), 102921. doi:10.1016/j.marstruc.2020.102921.
[5] Kuramoto, H., Li, B., Meas, K., & Fauzan. (2011). Experimental and Analytical Performance Evaluation of Engineering Wood Encased Concrete-Steel Beam-Column Joints. Journal of Structural Engineering, 137(8), 822–833. doi:10.1061/(asce)st.1943-541x.0000334.
[6] Wu, C., Liu, J., Tan, W., & Wang, P. (2020). Seismic behavior of composite interior joints of prefabricated H-shaped steel reinforced concrete column - steel beam. Structures, 23, 558–572. doi:10.1016/j.istruc.2019.11.008.
[7] Djamaluddin, R., Irmawaty, R., & Yamaguchi, K. (2024). Flexural Behavior of Repaired Reinforced Concrete Beams Due to Corrosion of Steel Reinforcement Using Grouting and FRP Sheet Strengthening. Civil Engineering Journal, 10(1), 222-233. doi:10.28991/CEJ-2024-010-01-014.
[8] Şermet, F., Ercan, E., Hökelekli, E., Demir, A., & Arısoy, B. (2021). The behavior of concrete-encased steel composite column-beam joints under cyclic loading. Structural Design of Tall and Special Buildings, 30(6), 1–20. doi:10.1002/tal.1842.
[9] Shaaban, I. G., & Said, M. (2018). Finite element modeling of exterior beam-column joints strengthened by ferrocement under cyclic loading. Case Studies in Construction Materials, 8, 333–346. doi:10.1016/j.cscm.2018.02.010.
[10] Chen, L., Feng, J., Xue, Y., & Liang, C. (2023). Seismic behavior of an innovative prefabricated steel-concrete composite beam-column joint. Journal of Building Engineering, 76(March), 107211. doi:10.1016/j.jobe.2023.107211.
[11] Venkatesan, B., Ilangovan, R., Jayabalan, P., Mahendran, N., & Sakthieswaran, N. (2016). Finite Element Analysis (FEA) for the Beam-Column Joint Subjected to Cyclic Loading Was Performed Using ANSYS. Circuits and Systems, 7(8), 1581–1597. doi:10.4236/cs.2016.78138.
[12] Asran, A., Al-Esnawy, H., & Fayed, S. (2016). A review on reinforced concrete beam-column connections. In The International Conference on Civil and Architecture Engineering, International Conference on Civil and Architecture Engineering, 1-27. doi:10.21608/iccae.2016.43415.
[13] Kotwal, S. S., Kadam, V. S., More, M. M., Patil, A. S., & Mohite, N. A. (2022). A Literature Review on Beam Column Joints with Different Loading Condition and Methods of Strengthening. International Journal for Research in Applied Science and Engineering Technology, 10(5), 4017–4022. doi:10.22214/ijraset.2022.43318.
[14] Septiarsilia, Y., Iranata, D., & Suswanto, B. (2023). Hybrid Beam-Column Connection of Precast Concrete Structures: A Review. E3S Web of Conferences, 434, 1–12. doi:10.1051/e3sconf/202343402019.
[15] Ghayeb, H. H., Razak, H. A., & Sulong, N. H. R. (2017). Development and testing of hybrid precast concrete beam-to-column connections under cyclic loading. Construction and Building Materials, 151, 258–278. doi:10.1016/j.conbuildmat.2017.06.073.
[16] Fan, J. J., Wu, G., Feng, D. C., Zeng, Y. H., & Lu, Y. (2020). Seismic performance of a novel self-sustaining beam-column connection for precast concrete moment-resisting frames. Engineering Structures, 222(June), 111096. doi:10.1016/j.engstruct.2020.111096.
[17] Septiarsilia, Y., Iranata, D., Suswanto, B. (2024). Evaluation of Beam–Column Connection Capacity According to SNI 2847–2019 and SNI 1726–2019. Advances in Civil Engineering Materials. ICACE 2023, Lecture Notes in Civil Engineering, 466, Springer, Singapore. doi:10.1007/978-981-97-0751-5_82.
[18] Yang, X., Dong, Y., Liu, X., Qiu, T., & Zhou, J. (2024). Seismic Behavior of Concrete Beam-Column Joints Reinforced with Steel-Jacketed Grouting. Buildings, 14(10). doi:10.3390/buildings14103239.
[19] Zhang, L., Yao, J., Hu, Y., Gao, J., & Cheng, Z. (2022). Predicting shear strength of steel fiber reinforced concrete beam-column joints by modified compression field theory. Structures, 41, 1432–1441. doi:10.1016/j.istruc.2022.05.072.
[20] Gou, S., Ding, R., Fan, J., Nie, X., & Zhang, J. (2019). Experimental study on seismic performance of precast LSECC/RC composite joints with U-shaped LSECC beam shells. Engineering Structures, 189, 618–634. doi:10.1016/j.engstruct.2019.03.097.
[21] Sabah, H. A. H., & Harba, I. S. I. (2021). A Review-Behavior of Reinforced Concrete Exterior Beam-Column Connections under Cyclic Loading. E3S Web of Conferences, 318. doi:10.1051/e3sconf/202131803008.
[22] Majumdar, M. R. B. A. (2022). Influence of Beam-Column Joint on the Seismic Response of RC Frames. International Journal for Research Trends and Innovation, 7(10), 97–106.
[23] Shen, X., Li, B., & Chen, Y. T. (2024). Seismic performance of reinforced concrete beam-column joints with diagonal bars wrapped by steel tubes: experimental, numerical and analytical study. Structures, 59. doi:10.1016/j.istruc.2023.105734.
[24] Şermet, F., Ercan, E., Hökelekli, E., & Arisoy, B. (2020). Cyclic Behavior of Composite Column-Reinforced Concrete Beam Joints. Sigma Journal of Engineering and Natural Sciences, 38(3), 1427–1445.
[25] Chen, L., Wang, Z., Ma, B., Peng, G., Wang, C., & Zhou, L. (2025). Seismic performance of a novel steel-concrete composite beam-column joint. Journal of Constructional Steel Research, 229(January), 109479. doi:10.1016/j.jcsr.2025.109479.
[26] Ghayeb, H. H., Ramli Sulong, N. H., Razak, H. A., & Mo, K. H. (2022). Enhancement of seismic behaviour of precast beam-to-column joints using engineered cementitious composite. Engineering Structures, 255, 113932. doi:10.1016/j.engstruct.2022.113932.
[27] Choi, H. K., Choi, Y. C., & Choi, C. S. (2013). Development and testing of precast concrete beam-to-column connections. Engineering Structures, 56, 1820–1835. doi:10.1016/j.engstruct.2013.07.021.
[28] Walpole, W. R. (1985). Beam-Column Joints. Bulletin of the New Zealand National Society for Earthquake Engineering, 18(4), 369–380. doi:10.5459/bnzsee.18.4.369-380.
[29] Akguzel, U., & Pampanin, S. (2010). Effect of axial load variation on the retrofit of exterior reinforced concrete beam-column joints. NZSEE Conference, 26-28 March, 2010, Wellington, New Zealand.
[30] Masi, A., Santarsiero, G., Mossucca, A., & Nigro, D. (2014). Influence of axial load on the seismic behavior of RC beam-column joints with wide beam. Applied Mechanics and Materials, 508, 208–214. doi:10.4028/www.scientific.net/AMM.508.208.
[31] Gan, D., Li, H., Zhou, Z., & Zhou, X. (2023). Effect of column flexural capacities and axial loads on bond behavior of interior beam-column joints. Engineering Structures, 289(October 2022), 116331. doi:10.1016/j.engstruct.2023.116331.
[32] Li, B., Lam, E. S. S., Wu, B., & Wang, Y. Y. (2015). Effect of high axial load on seismic behavior of reinforced concrete beam-column joints with and without strengthening. ACI Structural Journal, 112(6), 713–724. doi:10.14359/51687938.
[33] Al-Osta, M. A., Khan, U., Baluch, M. H., & Rahman, M. K. (2018). Effects of Variation of Axial Load on Seismic Performance of Shear Deficient RC Exterior BCJs. International Journal of Concrete Structures and Materials, 12(1), 1-20. doi:10.1186/s40069-018-0277-0.
[34] Haach, V. G., Lúcia Homce De Cresce El Debs, A., & Khalil El Debs, M. (2008). Evaluation of the influence of the column axial load on the behavior of monotonically loaded R/C exterior beam-column joints through numerical simulations. Engineering Structures, 30(4), 965–975. doi:10.1016/j.engstruct.2007.06.005.
[35] Bindhu, K. R., Sukumar, P. M., & Jaya, K. P. (2009). Performance of exterior beam-column joints under seismic type loading. ISET Journal of Earthquake Technology, 46(2), 47–64.
[36] Etemadi, E., & Vincent, T. (2017). Mechanical behavior of RC exterior wide beam-column joints under lateral loading: a parametric computational study. International Journal of Engineering and Technology, 9(3), 2003–2012. doi:10.21817/ijet/2017/v9i3/1709030153.
[37] Zhuang, M. L., Cheng, J., Fei, D., Sun, C., Wang, Z., Chen, B., & Qiao, Y. (2024). Numerical Simulation Study on the Seismic Performance of Prefabricated Fiber-Reinforced Concrete Beam–Column Joints with Grouted Sleeve Connections. International Journal of Concrete Structures and Materials, 18(1), 26. doi:10.1186/s40069-024-00671-2.
[38] Ašonja, A., Desnica, E., & Palinkaš, I. (2016). Analysis of the static behavior of the shaft based on finite element method under effect of different variants of load. Applied Engineering Letters, 1(1), 8–15.
[39] Xiao, Y., Yu, M., & Liu, W. (2024). Finite Element Analysis of Prefabricated Semi-Rigid Concrete Beam–Column Joint with Steel Connections. Applied Sciences (Switzerland), 14(12). doi:10.3390/app14125070.
[40] Birtel, V. A. M. P., & Mark, P. (2006). Parameterised finite element modelling of RC beam shear failure. ABAQUS users’ conference, 23-25 Mat, 2006, Cambridge, United States.
[41] Nafees, A., Javed, M. F., Musarat, M. A., Ali, M., Aslam, F., & Vatin, N. I. (2021). FE Modelling and Analysis of Beam Column Joint Using Reactive Powder Concrete. Crystals, 11(11), 1372. doi:10.3390/cryst11111372.
[42] Sahil, M., Bahrami, A., Waqas, H. A., Amin, F., Mansoor Khan, M., Iqbal, F., Fawad, M., & Najam, F. A. (2024). Seismic performance evaluation of exterior reinforced concrete beam-column connections retrofitted with economical perforated steel haunches. Results in Engineering, 22(April), 102179. doi:10.1016/j.rineng.2024.102179.
[43] Jia, L.-J., & Kuwamura, H. (2014). Prediction of Cyclic Behaviors of Mild Steel at Large Plastic Strain Using Coupon Test Results. Journal of Structural Engineering, 140(2), 04013056. doi:10.1061/(asce)st.1943-541x.0000848.
[44] Amalia, A. R., Ochi, K., Tanaka, R., Kamachi, T., & Shiota, T. (2023). Comparison of hardening rules for numerical analysis of square hollow section under cyclic bending loading. Advances in Intelligent Applications and Innovative Approach, 2760, 020005. doi:10.1063/5.0129582.
[45] SNI-2847. (2019). Requirements for Structural Concrete for Building Structures. Standar Nasional Indonesia (SNI), Jakarta, Indonesia. (In Indonesian).
[46] ACI PRC-374.2-13. (2013). Guide for Testing Reinforced Concrete Structural Elements Under Slowly Applied Simulated Seismic Loads. American Concrete Institute (ACI), Farmington Hills, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.