Experimental and Numerical Analysis of the Behavior of Steel Scaffolding

Florim Grajçevci, Armend Mujaj, Driton Kryeziu, Elfrida Shehu, Zijadin Guri

Abstract


In recent days, due to the reduction in the labor force, investment in construction equipment has become increasingly common to compensate for the shortage of workers. Among other equipment, scaffolding—both external and internal—plays a crucial role during the construction phase of buildings. Scaffolds are among the components that require special attention, as they are directly linked to the health and safety of workers. For this reason, they have received significant attention in recent years following frequent collapse incidents. Any defect in the construction or use of scaffolding can pose serious, even fatal, risks to workers. Therefore, the safety and stability of scaffolds are essential for preventing accidents and protecting the lives of those working on construction sites, especially those working at great heights. This study analyzes scaffolding with a height of 200 cm, treating it in a spatial manner to calculate the maximum load-bearing capacity, lateral and vertical displacements, as well as to assess the stress and deformation states in the vertical elements (columns). This process was carried out by applying the rules of Eurocode EN 1993-1-1, along with experimental analysis and calculations using the SEIMOSOFT application software.

 

Doi: 10.28991/CEJ-2025-011-05-014

Full Text: PDF


Keywords


Steel Scaffold; Circular Hollow Section; European Standards; Strain Gauges.

References


EN 1990. (2002). Eurocode-Basis of structural design. European Committee for Standardization, Brussels, Belgium.

‎EN 1991-1-1. (2002). Eurocode 1: Actions on structures - Part 1-1: General actions - Densities, self-weight, imposed loads for buildings. European Committee for Standardization, Brussels, Belgium.

‎ EN 1993-1-1:2005. (2005). Design of steel structures - Part 1-1: General rules and rules for buildings. European Committee for Standardization, Brussels, Belgium.

BS EN 12811-1:2003 (2003). Temporary Works Equipment - Scaffolds. Performance requirements and general design. British Standards Institution, London, United Kingdom. doi:10.3403/03061625u.

Chu, Q., Liu, H., Xia, S., Dong, J., Lei, M., Tse, T. K. T., Teng, L., Li, C. Y., & Fu, Y. (2022). Numerical and Experimental Study on the Member Performance and Stability Bearing Capacity of Wheel Coupler Formwork Supports. Applied Sciences (Switzerland), 12(20), 10452. doi:10.3390/app122010452.

Lu, Y., Lin, T., & Wu, L. (2025). Experimental study on integrated of steel protective mesh and disk lock scaffold. Journal of Constructional Steel Research, 227, 109321. doi:10.1016/j.jcsr.2024.109321.

Zhang, H., Chandrangsu, T., & Rasmussen, K. J. R. (2010). Probabilistic study of the strength of steel scaffold systems. Structural Safety, 32(6), 393–401. doi:10.1016/j.strusafe.2010.02.005.

Weesner, L. B., & Jones, H. L. (2001). Experimental and analytical capacity of frame scaffolding. Engineering Structures, 23(6), 592–599. doi:10.1016/S0141-0296(00)00087-0.

Huang, H., Peng, Z., Hou, J., Zheng, X., Ding, Y., & Wu, H. (2024). Study on the Ultimate Load-Bearing Capacity of Disc Buckle Tall Formwork Support Considering Uncertain Factors. Buildings, 14(3), 828. doi:10.3390/buildings14030828.

Pieńko, M., & Błazik-Borowa, E. (2020). Experimental studies of ringlock scaffolding joint. Journal of Constructional Steel Research, 173, 106265. doi:10.1016/j.jcsr.2020.106265.

Chandrangsu, T., & Rasmussen, K. J. (2011). Investigation of geometric imperfections and joint stiffness of support scaffold systems. Journal of Constructional Steel Research, 67(4), 576-584. doi:10.1016/j.jcsr.2010.12.004.

Zhang, L., Liu, J., Tang, Q., & Liu, Z. (2023). A numerical study on rotational stiffness characteristics of the disk lock joint. Journal of Constructional Steel Research, 207, 107968. doi:10.1016/j.jcsr.2023.107968.

Do Lee, H., Won, J. H., Jang, N. G., Mha, H. S., Jeong, S. choon, & Kim, S. (2020). Experimental Study on Load Carrying Capacity Enhancement of System Supports Considering Full Installation of Bracing Members. International Journal of Steel Structures, 20(6), 2051–2067. doi:10.1007/s13296-020-00430-5.

Takahashi, H., Ohdo, K., & Takanashi, S. (2011). Experimental study and evaluation method for the buckling strength of scaffold. Procedia Engineering, 14, 297–303. doi:10.1016/j.proeng.2011.07.036.

Kim, H., Lim, J., Lee, J., Kang, Y. J., & Kim, S. (2021). Experimental investigations on ultimate behavior of fabricated mobile scaffolds. Metals, 11(6), 851. doi:10.3390/met11060851.

Peng, J. L., Chen, K. H., Chan, S. L., & Chen, W. T. (2009). Experimental and analytical studies on steel scaffolds under eccentric loads. Journal of Constructional Steel Research, 65(2), 422–435. doi:10.1016/j.jcsr.2008.03.024.

Alqattan, H. F., El Aghoury, I. M., & Ibrahim, S. A. B. (2024). Experimental investigation and analytical modeling of steel falsework systems. Structures, 70, 107623. doi:10.1016/j.istruc.2024.107623.

Mercier, C., Khelil, A., Al Mahmoud, F., Blin-Lacroix, J. L., & Pamies, A. (2021). Experimental investigations of buckling behaviour of steel scaffolds. Structures, 33, 433–450. doi:10.1016/j.istruc.2021.04.045.

Baláž, I., Koleková, Y., Agüero, A., & Balážová, P. (2023). Consistency of Imperfections in Steel Eurocodes. Applied Sciences (Switzerland), 13(1), 554. doi:10.3390/app13010554.

Morel, J. (2005). Calculation of Metallic Structures according to Eurocode 3. Eurocode, Brussels, Belgium. (In French).

ISO 6892-1. (2019). Metallic materials-Tensile testing-Part: Method of test at room temperature. International Organization for Standardization (ISO), Geneva, Switzerland.

EN 10002-1:2001. (2001). Metallic materials—tensile testing: I. Method of test at ambient temperature. European Committee for Standardization, Brussels, Belgium.

Grajçevci, F., Mujaj, A., Kryeziu, D., & Shehu, E. (2024). Experimental and Numerical Analysis of Concrete Columns under Axial Load Based on European Design Norms. Civil Engineering Journal (Iran), 10(2), 419–430. doi:10.28991/CEJ-2024-010-02-05.

Peng, J. L., Wu, C. W., Chan, S. L., & Huang, C. H. (2013). Experimental and numerical studies of practical system scaffolds. Journal of Constructional Steel Research, 91, 64–75. doi:10.1016/j.jcsr.2013.07.028.

Peng, J. L., Wang, P. L., Chan, S. L., & Wu, P. K. (2020). Experimental Study on Load-Bearing Capacities of Frame-Type Scaffolds Used in Precast Construction. International Journal of Steel Structures, 20(2), 400–414. doi:10.1007/s13296-019-00292-6.

Abdel-Jaber, M., Abdel-Jaber, M. S., & Beale, R. G. (2022). An experimental study into the behaviour of tube and fitting scaffold structures under cyclic side and vertical loads. Metals, 12(1), 40. doi:10.3390/met12010040.

Grajçevci, F., Mujaj, A., Kryeziu, D., Rrudhani, G., & Shkodrani, N. (2024). Experimental and Numerical Research on the Behavior of Steel Columns with Circular Hollow Cross Sections. Civil Engineering Journal (Iran), 10(5), 1577–1588. doi:10.28991/CEJ-2024-010-05-014.


Full Text: PDF

DOI: 10.28991/CEJ-2025-011-05-014

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Florim H Grajcevci

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message