Energy Optimization in Residential Buildings: Evaluating PCM-CLT Wall Systems Across U.S. Climate Zones
Downloads
Doi: 10.28991/CEJ-2025-011-05-05
Full Text: PDF
[2] NREL. (2023). NREL Researchers Reveal How Buildings Across United States Do”and Could”Use Energy. National Renewable Energy Laboratory (NREL), Golden, United States. Available online: https://www.nrel.gov/news/features/2023/nrel-researchers-reveal-how-buildings-across-the-united-states-do-and-could-use-energy.html. (accessed on April 2025).
[3] IEA. (2019). Heat – Renewables 2019 – Analysis. International Energy Agency (IEA), Paris, France. Available online: https://www.iea.org/reports/renewables-2019/heat. (accessed on May 2025).
[4] IEA. (2019). Heating. International Energy Agency (IEA), Paris, France. Available online: https://www.iea.org/energy-system/buildings/heating (accessed on April 2025).
[5] Ritchie, H. (2024). Air conditioning causes around 3% of greenhouse gas emissions. How will this change in the future?. Our World in Data, Oxford, United Kingdom. Available online: https://ourworldindata.org/air-conditioning-causes-around-greenhouse-gas-emissions-will-change-future (accessed on April 2025).
[6] IRENA (2025). Power to heat and cooling: Status, International Renewable Energy Agency, Masdar City, United Arab Emirates. Available online: https://www.irena.org/Innovation-landscape-for-smart-electrification/Power-to-heat-and-cooling/Status (accessed on April 2025).
[7] U.S. Department of Energy (2025). Why Energy Efficiency Matters, United States Department of Energy, Washington, United States. Available online: https://www.energy.gov/energysaver/why-energy-efficiency-matters (accessed on April 2025).
[8] EIA. (2023). U Use of energy explained Energy use in commercial buildings. U.S. Energy Information Administration (EIA), Washington, United States. Available online: https://www.eia.gov/energyexplained/use-of-energy/commercial-buildings.php (accessed on April 2025)
[9] U.S. Department of Energy (2025). Data and Analysis for Buildings Sector Innovation. Decarbonizing the U.S. Economy by 2050: A National Blueprint for the Buildings Sector, United States Department of Energy, Washington, United States. Available online: https://www.energy.gov/eere/decarbonizing-us-economy-2050-national-blueprint-buildings-sector (accessed on April 2025).
[10] Pandey, B., Banerjee, R., & Sharma, A. (2021). Coupled EnergyPlus and CFD analysis of PCM for thermal management of buildings. Energy and Buildings, 231, 110598. doi:10.1016/j.enbuild.2020.110598.
[11] Anand, V., Kadiri, V. L., & Putcha, C. (2023). Passive buildings: a state-of-the-art review. Journal of Infrastructure Preservation and Resilience, 4(1), 3. doi:10.1186/s43065-022-00068-z.
[12] Hassan, F., Jamil, F., Hussain, A., Ali, H. M., Janjua, M. M., Khushnood, S., Farhan, M., Altaf, K., Said, Z., & Li, C. (2022). Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: A state of the art review. Sustainable Energy Technologies and Assessments, 49, 101646. doi:10.1016/j.seta.2021.101646.
[13] Xu, C., Zhang, Y., & Qiu, D. (2024). The Regulation of Temperature Fluctuations and Energy Consumption in Buildings Using Phase Change Material–Gypsum Boards in Summer. Buildings, 14(11), 3387. doi:10.3390/buildings14113387.
[14] Frigione, M., Lettieri, M., & Sarcinella, A. (2019). Phase change materials for energy efficiency in buildings and their use in mortars. Materials, 12(8), 1260. doi:10.3390/ma12081260.
[15] Kishore, R. A., Bianchi, M. V. A., Booten, C., Vidal, J., & Jackson, R. (2020). Optimizing PCM-integrated walls for potential energy savings in U.S. Buildings. Energy and Buildings, 226, 110355. doi:10.1016/j.enbuild.2020.110355.
[16] Soleiman Dehkordi, B., & Afrand, M. (2022). Energy-saving owing to using PCM into buildings: Considering of hot and cold climate region. Sustainable Energy Technologies and Assessments, 52, 102112. doi:10.1016/j.seta.2022.102112.
[17] Baylis, C., & Cruickshank, C. A. (2024). Parametric analysis of phase change materials within cold climate buildings: Effects of implementation location and properties. Energy and Buildings, 303, 113822. doi:10.1016/j.enbuild.2023.113822.
[18] Ahangari, M., & Maerefat, M. (2019). An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions. Sustainable Cities and Society, 44, 120–129. doi:10.1016/j.scs.2018.09.008.
[19] Marin, P., Saffari, M., de Gracia, A., Zhu, X., Farid, M. M., Cabeza, L. F., & Ushak, S. (2016). Energy savings due to the use of PCM for relocatable lightweight buildings passive heating and cooling in different weather conditions. Energy and Buildings, 129, 274–283. doi:10.1016/j.enbuild.2016.08.007.
[20] Al-Yasiri, Q., & Szabó, M. (2021). Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. Journal of Building Engineering, 36, 102122. doi:10.1016/j.jobe.2020.102122.
[21] Moore, A. (2022). 5 Benefits of Building with Cross-Laminated Timber. College of Natural Resources News, Raleigh, United States. Available online: https://cnr.ncsu.edu/news/2022/08/5-benefits-cross-laminated-timber/ (accessed on April 2021).
[22] Park, J., Chang, S. J., & Kim, S. (2025). Enhancing thermal performance of cross-laminated timber using phase change materials and biochar composites. Journal of Energy Storage, 109, 115198. doi:10.1016/j.est.2024.115198.
[23] He, Y., Li, S., Ariffin, M. M., Abu-Hamdeh, N. H., Karimipour, A., Hatamleh, R. I., Viet, P. H. H., & Karimipour, A. (2024). New structure for better thermal resistance of building with phase change material: Response to milder thermal change than common walls. Case Studies in Thermal Engineering, 62, 105189. doi:10.1016/j.csite.2024.105189.
[24] Cascone, Y., Capozzoli, A., & Perino, M. (2018). Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates. Applied Energy, 211, 929–953. doi:10.1016/j.apenergy.2017.11.081.
[25] Lagou, A., Kylili, A., Š adauskienÄ—, J., & Fokaides, P. A. (2019). Numerical investigation of phase change materials (PCM) optimal melting properties and position in building elements under diverse conditions. Construction and Building Materials, 225, 452–464. doi:10.1016/j.conbuildmat.2019.07.199.
[26] Arıcı, M., Bilgin, F., Niоetić, S., & Karabay, H. (2020). PCM integrated to external building walls: An optimization study on maximum activation of latent heat. Applied Thermal Engineering, 165, 114560. doi:10.1016/j.applthermaleng.2019.114560.
[27] Darvishi, F., Markarian, E., Ziasistani, N., Ziasistani, N., & Javanshir, A. (2019). Energy performance assessment of PCM buildings considering multiple factors. 5th International Conference on Power Generation Systems and Renewable Energy Technologies, PGSRET 2019, 1–5. doi:10.1109/PGSRET.2019.8882672.
[28] Kalbasi, R., Samali, B., & Afrand, M. (2023). Taking benefits of using PCMs in buildings to meet energy efficiency criteria in net zero by 2050. Chemosphere, 311, 137100. doi:10.1016/j.chemosphere.2022.137100.
[29] Kawaguchi, T., Sakai, H., Sheng, N., Kurniawan, A., & Nomura, T. (2020). Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications. Applied Energy, 276, 115487. doi:10.1016/j.apenergy.2020.115487.
[30] Wang, X., Li, W., Luo, Z., Wang, K., & Shah, S. P. (2022). A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application. Energy and Buildings, 260, 111923. doi:10.1016/j.enbuild.2022.111923.
[31] Dora, S., Kuznik, F., & Mini, K. M. (2025). A novel PCM-based foam concrete for heat transfer in buildings -Experimental developments and simulation modelling. Journal of Energy Storage, 105, 114625. doi:10.1016/j.est.2024.114625.
[32] Kwon, M. S., Jin, X., Kim, Y. C., & Hu, J. W. (2024). Development of microencapsulated PCM concrete with improved strength and long-term thermal performance using MWCNTs. Construction and Building Materials, 442, 137609. doi:10.1016/j.conbuildmat.2024.137609.
[33] Lachheb, M., Younsi, Z., Youssef, N., & Bouadila, S. (2024). Enhancing building energy efficiency and thermal performance with PCM-Integrated brick walls: A comprehensive review. Building and Environment, 256, 111476. doi:10.1016/j.buildenv.2024.111476.
[34] Shi, C., Zhao, Q., Wang, P., & Yang, L. (2023). Preparation, performance study and application simulation of gypsum-paraffin/EG composite phase change building wallboard. Journal of Building Engineering, 65, 105813. doi:10.1016/j.jobe.2022.105813.
[35] Liu, Z., Hou, J., Meng, X., & Dewancker, B. J. (2021). A numerical study on the effect of phase-change material (PCM) parameters on the thermal performance of lightweight building walls. Case Studies in Construction Materials, 15, 758. doi:10.1016/j.cscm.2021.e00758.
[36] Fleisher, G. (2024). Mass Timber Construction: Building the Future with Wood. Modular Home Source, Toronto, Canada. Available online: https://modularhomesource.com/mass-timber-construction-building-the-future-with-wood/ (accessed on April 2025).
[37] Skanska (2025). The future of mass timber: key trends to watch, Skanska, New York, United States. Available online: https://www.usa.skanska.com/who-we-are/media/constructive-thinking/the-future-of-mass-timber-key-trends-to-watch/ (accessed on April 2025).
[38] Brandner, R., Flatscher, G., Ringhofer, A., Schickhofer, G., & Thiel, A. (2016). Cross laminated timber (CLT): overview and development. European Journal of Wood and Wood Products, 74(3), 331–351. doi:10.1007/s00107-015-0999-5.
[39] Hiziroglu, S. (2019). Cross Laminated Timber (CLT) as a Value-Added Product. Oklahoma State University, Stillwater, United States. Available online: https://extension.okstate.edu/fact-sheets/cross-laminated-timber-clt-as-a-value-added-product.html (accessed on April 2025).
[40] Setter, L., Smoorenburg, E., Wijesuriya, S., & Tabares-Velasco, P. C. (2019). Energy and hygrothermal performance of cross laminated timber single-family homes subjected to constant and variable electric rates. Journal of Building Engineering, 25, 100784. doi:10.1016/j.jobe.2019.100784.
[41] Pierobon, F., Huang, M., Simonen, K., & Ganguly, I. (2019). Environmental benefits of using hybrid CLT structure in midrise non-residential construction: An LCA based comparative case study in the U.S. Pacific Northwest. Journal of Building Engineering, 26, 100862. doi:10.1016/j.jobe.2019.100862.
[42] Shin, B., Wi, S., & Kim, S. (2023). Assessing the environmental impact of using CLT-hybrid walls as a sustainable alternative in high-rise residential buildings. Energy and Buildings, 294, 113228. doi:10.1016/j.enbuild.2023.113228.
[43] Hartig, J. U., & Haller, P. (2024). Combustion characteristics and mechanical properties of wood impregnated with a paraffinic phase change material. European Journal of Wood and Wood Products, 82(2), 329–339. doi:10.1007/s00107-023-02016-4.
[44] Li, Z. X., Al-Rashed, A. A. A. A., Rostamzadeh, M., Kalbasi, R., Shahsavar, A., & Afrand, M. (2019). Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM. Energy Conversion and Management, 195, 43–56. doi:10.1016/j.enconman.2019.04.075.
[45] EnergyPlus (2025). Table of Contents: Input Output Reference ” EnergyPlus 22.2, University of Illinois, Champaign, United States. Available online: https://bigladdersoftware.com/epx/docs/22-2/input-output-reference/ (accessed on April 2025).
[46] Tabares-Velasco, P. C., Christensen, C., & Bianchi, M. (2012). Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Building and Environment, 54, 186–196. doi:10.1016/j.buildenv.2012.02.019.
[47] Abbassi, Y., Baniasadi, E., & Ahmadikia, H. (2022). Transient energy storage in phase change materials, development and simulation of a new TRNSYS component. Journal of Building Engineering, 50, 104188. doi:10.1016/j.jobe.2022.104188.
[48] Mousavi, S., Rismanchi, B., Brey, S., & Aye, L. (2023). Development and validation of a transient simulation model of a full-scale PCM embedded radiant chilled ceiling. Building Simulation, 16(6), 813–829. doi:10.1007/s12273-023-0985-5.
[49] Xu, X., Xie, J., Zhang, X., Chen, G., & Liu, J. (2025). A new validated TRNSYS module for phase change material-filled multi-glazed windows. Applied Thermal Engineering, 258, 124706. doi:10.1016/j.applthermaleng.2024.124706.
[50] Wieprzkowicz, A., & Heim, D. (2020). Modelling of thermal processes in a glazing structure with temperature dependent optical properties - An example of PCM-window. Renewable Energy, 160, 653–662. doi:10.1016/j.renene.2020.06.146.
[51] Su, W., Darkwa, J., Kokogiannakis, G., & Li, Y. (2020). Thermal Performance of Various Microencapsulated Phase Change Material Drywalls Integrated into Buildings: A Numerical Investigation by ESP-r. Proceedings of the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019). ISHVAC 2019, Environmental Science and Engineering, Springer, Singapore. doi:10.1007/978-981-13-9520-8_87.
[52] Yin, H., Norouziasas, A., & Hamdy, M. (2024). PCM as an energy flexibility asset: How design and operation can be optimized for heating in residential buildings? Energy and Buildings, 322, 114721. doi:10.1016/j.enbuild.2024.114721.
[53] Millers, R., Korjakins, A., LeСinskis, A., & Borodinecs, A. (2020). Cooling panel with integrated PCM layer: A verified simulation study. Energies, 13(21), 5715. doi:10.3390/en13215715.
[54] Mazzeo, D., Matera, N., Cornaro, C., Oliveti, G., Romagnoni, P., & De Santoli, L. (2020). EnergyPlus, IDA ICE and TRNSYS predictive simulation accuracy for building thermal behaviour evaluation by using an experimental campaign in solar test boxes with and without a PCM module. Energy and Buildings, 212, 109812. doi:10.1016/j.enbuild.2020.109812.
[55] Tabares-Velasco, P. C., Christensen, C., & Bianchi, M. V. A. (2012). Validation methodology to allow simulated peak reduction and energy performance analysis of residential building envelope with phase change materials. ASHRAE Transactions, 118(PART 2), 90–97.
[56] Alam, M., Jamil, H., Sanjayan, J., & Wilson, J. (2014). Energy saving potential of phase change materials in major Australian cities. Energy and Buildings, 78, 192–201. doi:10.1016/j.enbuild.2014.04.027.
[57] Kuznik, F., & Virgone, J. (2009). Experimental assessment of a phase change material for wall building use. Applied Energy, 86(10), 2038–2046. doi:10.1016/j.apenergy.2009.01.004.
[58] Wijesuriya, S., Tabares-Velasco, P. C., Biswas, K., & Heim, D. (2020). Empirical validation and comparison of PCM modeling algorithms commonly used in building energy and hygrothermal software. Building and Environment, 173, 106750. doi:10.1016/j.buildenv.2020.106750.
[59] Cao, S. (2010). State of the art thermal energy storage solutions for high performance buildings. Master Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
[60] Biswas, K., Lu, J., Soroushian, P., & Shrestha, S. (2014). Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Applied Energy, 131, 517–529. doi:10.1016/j.apenergy.2014.02.047.
[61] IRC. (2021). 2021 International Residential Code (IRC). International Code Council, Washington, United States.
[62] NDS. (2024). National Design Specification (NDS) for Wood Construction. American National Standards Institute (ANSI), Washington, United States.
[63] Liu, Z., Hou, J., Huang, Y., Zhang, J., Meng, X., & Dewancker, B. J. (2022). Influence of phase change material (PCM) parameters on the thermal performance of lightweight building walls with different thermal resistances. Case Studies in Thermal Engineering, 31, 101844. doi:10.1016/j.csite.2022.101844.
[64] Hasan, M. I., Basher, H. O., & Shdhan, A. O. (2018). Experimental investigation of phase change materials for insulation of residential buildings. Sustainable Cities and Society, 36, 42–58. doi:10.1016/j.scs.2017.10.009.
[65] Liu, Z., Hou, J., Wei, D., Meng, X., & Dewancker, B. J. (2022). Thermal performance analysis of lightweight building walls in different directions integrated with phase change materials (PCM). Case Studies in Thermal Engineering, 40, 102536. doi:10.1016/j.csite.2022.102536.
[66] Teamah, H. M. (2021). Comprehensive review of the application of phase change materials in residential heating applications. Alexandria Engineering Journal, 60(4), 3829–3843. doi:10.1016/j.aej.2021.02.053.
[67] ANSI/ASHRAE Standard-55. (2020). Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Peachtree, United States.
[68] Rubitherm Technologies (2025). PCM RT-line: Rubitherm Technologies GmbH, Berlin, Germany. Available online: https://www.rubitherm.eu/en/productcategory/organische-pcm-rt (accessed on April 2025).
[69] ICC. (2021). CHAPTER 5 FLOORS - R503.2 Wood structural panel sheathing. International Code Council (ICC), Washington, United States.
[70] European Panel Federation. (2025). Oriented strand board. Available online: https://europanels.org/the-wood-based-panel-industry/types-of-wood-based-panels-economic-impact/oriented-strand-board/ (accessed on April 2025).
[71] ICC. (2021). 2021 International Energy Conservation Code (IECC). International Code Council (ICC), Washington, United States.
[72] Owens Corning Insulation. (2025). FOAMULAR® XPS Insulation Products. Owens Corning Insulation, Toledo, United States. Available online: https://www.owenscorning.com/en-us/insulation/commercial/foamular-xps (accessed on April 2025).
[73] CLT Profi. (2025). Technical Specification of CLT Panels. CLT Profi, Riga, Latvia. Available online: https://cltprofi.com/clt-panels-technical-information/ (accessed on April 2025).
[74] Cho, H. M., Wi, S., Chang, S. J., & Kim, S. (2019). Hygrothermal properties analysis of cross-laminated timber wall with internal and external insulation systems. Journal of Cleaner Production, 231, 1353–1363. doi:10.1016/j.jclepro.2019.05.197.
[75] Antonopoulos, C., Gilbride, T., Margiotta, E., & Kaltreider, C. (2022). Guide to Determining Climate Zone by County: Building America and IECC 2021 Updates. Office of Scientific and Technical Information (OSTI). doi:10.2172/1893981.
[76] ANSI/ASHRAE 169-2020. (2020). Climatic Data for Building Design Standards. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Peachtree, United States.
[77] Climate.OneBuilding.Org. (2025). Repository of Building Simulation Climate Data: From the Creators of the EPW. Available online: https://climate.onebuilding.org/ (accessed on April 2025).
[78] AHRI 310/380. (2017). Packaged Terminal Air-Conditioners and Heat Pumps (CSA-C744-17). Air-Conditioning, Heating, and Refrigeration Institute, Arlington, United States.
[79] EnergyPlus (2025). Documentation. EnergyPlus, U.S. Department of Energy, Washington, United States. Available online: https://energyplus.net/documentation (accessed on April 2025).
[80] Li, Y., Long, E., Jin, Z., Li, J., Meng, X., Zhou, J., Xu, L., & Xiao, D. (2019). Heat storage and release characteristics of composite phase change wall under different intermittent heating conditions. Science and Technology for the Built Environment, 25(3), 336–345. doi:10.1080/23744731.2018.1527137.
[81] Wang, J., Long, E., Qin, W., & Xu, L. (2013). Ultrathin envelope thermal performance improvement of prefab house by integrating with phase change material. Energy and Buildings, 67, 210–216. doi:10.1016/j.enbuild.2013.08.029.
[82] Gbekou, F. K., Belloum, R., Chennouf, N., Agoudjil, B., Boudenne, A., & Benzarti, K. (2024). Thermal performance of a building envelope including microencapsulated phase change materials (PCMs): A multiscale experimental and numerical investigation. Building and Environment, 253, 111294. doi:10.1016/j.buildenv.2024.111294.
[83] ANSI/ASHRAE Standard 169-2020. (2020). Climatic Data for Building Design Standards. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Peachtree, United States.
[84] Schmidt, E. L., Riggio, M., Barbosa, A. R., & Mugabo, I. (2019). Environmental response of a CLT floor panel: Lessons for moisture management and monitoring of mass timber buildings. Building and Environment, 148, 609–622. doi:10.1016/j.buildenv.2018.11.038.
[85] Kukk, V., Bella, A., Kers, J., & Kalamees, T. (2021). Airtightness of cross-laminated timber envelopes: Influence of moisture content, indoor humidity, orientation, and assembly. Journal of Building Engineering, 44, 102610. doi:10.1016/j.jobe.2021.102610.
[86] Hiziroglu, S. (2017). Dimensional Changes in Wood. Oklahoma State University, Stillwater, United States. Available online: https://extension.okstate.edu/fact-sheets/dimensional-changes-in-wood.html (accessed on April 2025).
[87] Labihi, A., Ouikhalfan, M., Chehouani, H., & Benhamou, B. (2021). PCM incorporation into a cavity wall as an insulator and phase shifter: Experimental investigations and numerical modeling. International Journal of Energy Research, 45(11), 16728–16740. doi:10.1002/er.6918.
[88] Gholamibozanjani, G., & Farid, M. (2020). Peak load shifting using a price-based control in PCM-enhanced buildings. Solar Energy. CRC Press, Boca Raton, United States. doi:10.1016/j.solener.2020.09.016.
[89] Saffari, M., Roe, C., & Finn, D. P. (2022). Improving the building energy flexibility using PCM-enhanced envelopes. Applied Thermal Engineering, 217, 119092. doi:10.1016/j.applthermaleng.2022.119092.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
