Rehabilitation of Partially Corrosion-Damaged Post-Tensioned Concrete Structures Using Carbon Fiber Reinforced Polymer
Downloads
This study provides a comprehensive assessment of the deterioration and rehabilitation of post-tensioned (PT) concrete structures affected by chloride-induced corrosion. Through a detailed case study in the United Arab Emirates, the research identifies moisture ingress and inadequate waterproofing as primary contributors to corrosion in PT tendons and ducts, significantly compromising structural integrity. A rigorous evaluation using nondestructive and semi-destructive testing techniques was conducted to quantify damage and determine the extent of degradation. The results revealed severe corrosion in critical structural elements, necessitating targeted intervention to restore performance and durability. To address these challenges, an integrated rehabilitation strategy was developed, incorporating structural repairs, strengthening through carbon fiber-reinforced polymer (CFRP), and advanced waterproofing techniques. The adopted approach involved enlarging load-bearing components and applying CFRP to enhance flexural strength while minimizing aesthetic alterations. Experimental findings demonstrated that CFRP reinforcement increased slab flexural strength by 30% and reduced crack widths by 23%, effectively mitigating corrosion-related deterioration and extending service life. Furthermore, micro-concrete was utilized in all enlargement locations in compliance with ACI standards, ensuring long-term durability. The proposed rehabilitation framework offers a sustainable solution for extending the service life of PT structures exposed to aggressive environmental conditions. By addressing both immediate structural deficiencies and underlying degradation mechanisms, the strategy enhances resilience and reduces future maintenance requirements. The integration of CFRP strengthening, epoxy crack injection, and advanced waterproofing measures significantly improves corrosion resistance and structural longevity.
Downloads
[1] Ahmad, O. (2022). Financial comparative study between post-tensioned and reinforced concrete flat slab. International Journal of Advanced Engineering, Sciences and Applications, 3(1), 1–6. doi:10.47346/ijaesa.v3i1.67.
[2] Yousif, S., & Saka, M. P. (2021). Optimum design of post-tensioned flat slabs with its columns to ACI 318-11 using population-based beetle antenna search algorithm. Computers and Structures, 256, 106520. doi:10.1016/j.compstruc.2021.106520.
[3] Mohan, M. K., Pillai, R. G., Santhanam, M., & Gettu, R. (2021). High-performance cementitious grout with fly ash for corrosion protection of post-tensioned concrete structures. Construction and Building Materials, 281, 122612. doi:10.1016/j.conbuildmat.2021.122612.
[4] Lu, Z. H., Wu, S. Y., Tang, Z., Zhao, Y. G., & Li, W. (2021). Effect of chloride-induced corrosion on the bond behaviors between steel strands and concrete. Materials and Structures/Materiaux et Constructions, 54(3), 1–16. doi:10.1617/s11527-021-01724-8.
[5] Yang, Z. N., Lu, Z. H., Li, C. Q., Liu, X., & Song, X. (2024). Effect of grouting quality on flexural behavior of corroded post-tensioned concrete T-beams. Case Studies in Construction Materials, 21. doi:10.1016/j.cscm.2024.e03766.
[6] Nürnberger, U. (2002). Corrosion induced failure mechanisms of prestressing steel. Materials and Corrosion, 53(8), 591-601. doi:10.1002/1521-4176(200208)53:8<591::AID-MACO591>3.0.CO;2-X.
[7] Menga, A., Kanstad, T., Cantero, D., Bathen, L., Hornbostel, K., & Klausen, A. (2023). Corrosion-induced damages and failures of posttensioned bridges: A literature review. Structural Concrete, 24(1), 84–99. doi:10.1002/suco.202200297.
[8] Kioumarsi, M., Benenato, A., Ferracuti, B., & Imperatore, S. (2021). Residual flexural capacity of corroded prestressed reinforced concrete beams. Metals, 11(3), 442. doi:10.3390/met11030442.
[9] Blomfors, M., Lundgren, K., & Zandi, K. (2021). Incorporation of pre-existing longitudinal cracks in finite element analyses of corroded reinforced concrete beams failing in anchorage. Structure and Infrastructure Engineering, 17(7), 960-976. doi:10.1080/15732479.2020.1782444.
[10] Vereecken, E., Botte, W., Lombaert, G., & Caspeele, R. (2021). Assessment of corroded prestressed and posttensioned concrete structures: A review. Structural Concrete, 22(5), 2556–2580. doi:10.1002/suco.202100050.
[11] Hu, J. Y., Zhang, S. S., Chen, E., & Li, W. G. (2022). A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Construction and Building Materials, 325, 126718. doi:10.1016/j.conbuildmat.2022.126718.
[12] Lau, K., Permeh, S., & Lasa, I. (2023). Corrosion of prestress and posttension reinforced concrete bridges. Corrosion of Steel in Concrete Structures, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/B978-0-12-821840-2.00013-4.
[13] Ding, Z., & Cao, Q. (2024). A state-of-the-art review of flexural behaviors of PC beams with corroded prestressing tendons. Structures, 63, 106430. doi:10.1016/j.istruc.2024.106430.
[14] Campione, G., & Zizzo, M. (2022). Influence of strands corrosion on the flexural behavior of prestressed concrete beams. Structures, 45, 1366–1375. doi:10.1016/j.istruc.2022.09.073.
[15] Vecchi, F., Franceschini, L., Tondolo, F., Belletti, B., Sánchez Montero, J., & Minetola, P. (2021). Corrosion morphology of prestressing steel strands in naturally corroded PC beams. Construction and Building Materials, 296, 123720. doi:10.1016/j.conbuildmat.2021.123720.
[16] Asp, O., Tulonen, J., Kuusisto, L., & Laaksonen, A. (2021). Bond and re-anchoring tests of post-tensioned steel tendon in case of strand failure inside cement grouting with voids. Structural Concrete, 22(4), 2373–2390. doi:10.1002/suco.202000351.
[17] Huang, D., Chen, P., Peng, H., Yang, Y., Yuan, Q., & Su, M. (2021). A review and comparison study on drying shrinkage prediction between alkali-activated fly ash/slag and ordinary Portland cement. Construction and Building Materials, 305, 124760. doi:10.1016/j.conbuildmat.2021.124760.
[18] Kim, J., & Song, J. (2021). Time-Dependent Reliability Assessment and Updating of Post-tensioned Concrete Box Girder Bridges Considering Traffic Environment and Corrosion. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(4), 4021062. doi:10.1061/ajrua6.0001188.
[19] Peng, J., Xiao, J., Yang, Y., Dong, Y., & Zhang, J. (2024). Long-term experimental study and prediction of the mechanical performance on corroded prestressing steel strands subjected to marine salt spray environment. Construction and Building Materials, 425, 136069. doi:10.1016/j.conbuildmat.2024.136069.
[20] Cai, Z. K., Yuan, W., Li, S., Pan, X., & Zheng, Z. (2025). Seismic fragility analysis of coastal bridges considering different corrosion damage modes among multiple RC bridge columns. Case Studies in Construction Materials, 22, 4099. doi:10.1016/j.cscm.2024.e04099.
[21] Yang, J., Yuan, Z., Liu, J., & Yu, S. (2023). Study on Lifetime Performance Evaluation of a Precast Prestressed Concrete Frame in Chloride Environments. Materials, 16(20), 6666. doi:10.3390/ma16206666.
[22] Googan, C. (2022). Marine Corrosion and Cathodic Protection. In Marine Corrosion and Cathodic Protection. CRC Press. doi:10.1201/9781003216070.
[23] Jouni, A. (2024). A comprehensive approach about the cracks in post-tensioned bridges and case study. Ph.D. Thesis, Politecnico di Torino, Torino, Italy.
[24] Asamoto, S., Sato, J., Okazaki, S., Chun, P. J., Sahamitmongkol, R., & Nguyen, G. H. (2021). The cover depth effect on corrosion‐induced deterioration of reinforced concrete focusing on water penetration: Field survey and laboratory study. Materials, 14(13), 3478. doi:10.3390/ma14133478.
[25] Asmara, Y. P. (2024). Concrete Reinforcement Degradation and Rehabilitation: Damages, Corrosion and Prevention. Springer Nature, Singapore. doi:10.1007/978-981-99-5933-4.
[26] Hassani, S., & Dackermann, U. (2023). A Systematic Review of Advanced Sensor Technologies for Non-Destructive Testing and Structural Health Monitoring. Sensors, 23(4), 2204. doi:10.3390/s23042204.
[27] Rincon, L. F., Moscoso, Y. M., Hamami, A. E. A., Matos, J. C., & Bastidas-Arteaga, E. (2024). Degradation Models and Maintenance Strategies for Reinforced Concrete Structures in Coastal Environments under Climate Change: A Review. Buildings, 14(3), 562. doi:10.3390/buildings14030562.
[28] Hao, H., Bi, K., Chen, W., Pham, T. M., & Li, J. (2023). Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures. Engineering Structures, 277, 115477. doi:10.1016/j.engstruct.2022.115477.
[29] Li, F., Luo, X., & Liu, Z. (2017). Corrosion of anchorage head system of post‐tensioned prestressed concrete structures under chloride environment. Structural Concrete, 18(6), 902-913. doi:10.1002/suco.201600140.
[30] Tešić, K., Baričević, A., & Serdar, M. (2021). Non-destructive corrosion inspection of reinforced concrete using ground-penetrating radar: A review. Materials, 14(4), 1–20. doi:10.3390/ma14040975.
[31] Al Houri, A., Habib, A., Elzokra, A., & Habib, M. (2020). Tensile testing of soils: History, equipment and methodologies. Civil Engineering Journal, 6(3), 591–601. doi:10.28991/cej-2020-03091494.
[32] BS EN 14630:2006. (2006). Products and systems for the protection and repair of concrete structures. Test methods. Determination of carbonation depth in hardened concrete by the phenolphthalein method. British Standards Institution (BSI), London, United Kingdom.
[33] RILEM CPC-18. (1988). Measurement of Hardened Concrete Carbonation Depth. Materials and Structures 21, 453–455. doi:10.1007/BF02472327.
[34] ASTM C876. (2015). Standard test method for corrosion potentials of uncoated reinforcing steel in concrete. ASTM International, Pennsylvania, United States.
[35] ASTM C1202. (2012). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International, Pennsylvania, United States.
[36] BS EN 12504-1:2009. (2000). Testing concrete in structures - Cored specimens. Taking, examining and testing in compression. British Standards Institution (BSI), London, United Kingdom.
[37] BS 1881-124:2015+A1:2021. (2021). Testing Concrete - Methods for analysis of hardened concrete. British Standards Institution (BSI), London, United Kingdom.
[38] Funahashi, M., & Young, W. T. (1996). Cathodic protection of prestressed bridge members—Full-scale testing. Transportation research record, 1561(1), 13-25. doi:10.1177/0361198196156100103.
[39] Hansson, C. M. (1984). Comments on electrochemical measurements of the rate of corrosion of steel in concrete. Cement and Concrete Research, 14(4), 574–584. doi:10.1016/0008-8846(84)90135-2.
[40] Permeh, S., & Lau, K. (2022). Review of Electrochemical Testing to Assess Corrosion of Post-Tensioned Tendons with Segregated Grout. Construction Materials, 2(2), 70–84. doi:10.3390/constrmater2020006.
[41] Hauashdh, A., Nagapan, S., Jailani, J., & Gamil, Y. (2024). An integrated framework for sustainable and efficient building maintenance operations aligning with climate change, SDGs, and emerging technology. Results in Engineering, 21, 101822. doi:10.1016/j.rineng.2024.101822.
[42] Poursaee, A., & Hansson, C. M. (2009). Potential pitfalls in assessing chloride-induced corrosion of steel in concrete. Cement and Concrete Research, 39(5), 391–400. doi:10.1016/j.cemconres.2009.01.015.
[43] ACI 228.1R-19. (2019). Report on Methods for Estimating In-Place Concrete Strength. American Concrete Institute (ACI), Farmington Hills, United States.
[44] ACI. (2003). RAP-5: Surface Repair Using Form-and-Pump Techniques. American Concrete Institute (ACI), Farmington Hills, United States.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.