Mechanical Characteristics of Prestressed Concrete Cylinder Pipe Strengthened by EPS and CFRP Liner
Downloads
Prestressed concrete cylinder pipe (PCCP) has been applied in many large-scale hydraulic engineering projects around the world. And the prestressed wire breakage is the most common form of PCCP damage. Traditional carbon fiber reinforced polymer (CFRP) liner techniques fail to fully exploit the tensile performance of CFRP. Therefore, the method of using EPS cushion and CFRP liner to strengthen the PCCP with broken wire is proposed in this study. To clarify the effect of the proposed method, a finite element three-dimensional model is established and validated using experimental data. Subsequently, the effects of EPS thickness, CFRP thickness, and wire breakage ratio on the stress-strain response of the PCCP are analyzed. Based on different failure modes of the pipe, the influence of EPS and CFRP thickness on the internal pressure bearing capacity is discussed. The study reveals that the synergistic action of the EPS cushion can effectively enhance the internal pressure bearing capacity of the PCCP. As the thickness of EPS cushion and CFRP increases, the bearing capacity almost linearly increases. Under the influence of internal pressure, visible cracks first appear in the concrete core, followed by yielding of the steel cylinder, and finally the steel wire stress reaches its ultimate strength.
Downloads
[1] Koike, T. (2023). Historical aspects of lifeline earthquake engineering. Urban Lifeline, 1(1), 3. doi:10.1007/s44285-023-00004-x.
[2] Rahardjo, H., Zhai, Q., Satyanaga, A., Li, Y., Rangarajan, S., & Rahimi, A. (2023). Slope susceptibility map for preventive measures against rainfall-induced slope failure. Urban Lifeline, 1(1), 5. doi:10.1007/s44285-023-00006-9.
[3] Shaba, A. F., & Masheka, G. (2024). Evaluation of geosynthetic encased columns in Zambian heterogenous soils. Urban Lifeline, 2(1), 5. doi:10.1007/s44285-024-00015-2.
[4] Zhang, P., Yang, J., Zhang, Q., Chen Z., & Zhang, Q. (2022). Key technologies for broken wire of large diameter PCCP, Water Resources and Hydropower Engineering, 53(S2), 120-124. doi:10.13928/j.cnki.wrahe.2022.S2.028.
[5] Liu, Y., Yang, Y., & Yang J. (2021). Research and application of large PCCP water supply pipeline maintenance construction technology, Water Resources and Hydropower Engineering, 52(S1), 223–228. doi:10.13928/j.cnki.wrahe.2021.S1.042.
[6] Huang, Z. & Wang, R. (2021). Finite element analysis investigation of cracks impact on structurual safety performance of PCCP, Water Resources and Hydropower Engineering, 552(4), 88-94. doi:10.13928/j.cnki.wrahe.2021.04.009.
[7] Dong, X., Dou, T., Zhao, L., Cheng, B., & Liu J. (2020). An overview on safety assessment of pre-stressed concrete cylinder pipe (PCCP. Water Resources and Hydropower Engineering, 51(10), 72–80. doi:10.13928/j.cnki.wrahe.2020.10.009.
[8] Zhang, Q. (2019). PCCP reinforcement with prestressing technology, Water Resources and Hydropower Engineering, 50(S1), 126-132. doi:10.13928/j.cnki.wrahe.2019.S1.023.
[9] Zarghamee, M. S., Eggers, D. W., Ojdrovic, R., & Rose, B. (2003). Risk Analysis of Prestressed Concrete Cylinder Pipe with Broken Wires. New Pipeline Technologies, Security, and Safety, 599–609. doi:10.1061/40690(2003)81.
[10] Zarghamee, M. S., & Fok, K. (1990). Analysis of Prestressed Concrete Pipe under Combined Loads. Journal of Structural Engineering, 116(7), 2022–2039. doi:10.1061/(asce)0733-9445(1990)116:7(2022).
[11] Zarghamee, M. S., Ojdrovic, R. P., & Dana, W. R. (1993). Coating Delamination by Radial Tension in Prestressed Concrete Pipe. II: Analysis. Journal of Structural Engineering, 119(9), 2720–2732. doi:10.1061/(asce)0733-9445(1993)119:9(2720).
[12] Zarghamee, M. S., Ojdrovic, R. P., & Dana, W. R. (1993). Coating Delamination by Radial Tension in Prestressed Concrete Pipe. I: Experiments. Journal of Structural Engineering, 119(9), 2701–2719. doi:10.1061/(asce)0733-9445(1993)119:9(2701).
[13] You, R. (2012). Longitudinal Cracking Analysis of PCCP with Broken Wires. Applied Mechanics and Materials, 157–158, 976–981. doi:10.4028/www.scientific.net/amm.157-158.976.
[14] You, R., & Gong, H. (2012). Failure analysis of PCCP with broken wires. Applied Mechanics and Materials, 193–194, 855–858. doi:10.4028/www.scientific.net/AMM.193-194.855.
[15] You, R., & Gong, H. (2012). Steel-cylinder yielding analysis of PCCP with broken wires. Advanced Materials Research, 503–504, 819–823. doi:10.4028/www.scientific.net/AMR.503-504.819.
[16] Ge, S., & Sinha, S. (2015). Effect of Mortar Coating’s Bond Quality on the Structural Integrity of Prestressed Concrete Cylinder Pipe with Broken Wires. Journal of Materials Science Research, 4(3), 59–75. doi:10.5539/jmsr.v4n3p59.
[17] Hajali, M., Alavinasab, A., & Shdid, C. A. (2015). Effect of the location of broken wire wraps on the failure pressure of prestressed concrete cylinder pipes. Structural Concrete, 16(2), 297–303. doi:10.1002/suco.201400070.
[18] Hajali, M., Alavinasab, A., & Abi Shdid, C. (2016). Structural performance of buried prestressed concrete cylinder pipes with harnessed joints interaction using numerical modeling. Tunnelling and Underground Space Technology, 51, 11–19. doi:10.1016/j.tust.2015.10.016.
[19] Hajali, M., Alavinasab, A., & Shdid, C. A. (2016). Effect of the Number of Broken Wire Wraps on the Structural Performance of PCCP with Full Interaction at the Gasket Joint. Journal of Pipeline Systems Engineering and Practice, 7(2), 1–8. doi:10.1061/(asce)ps.1949-1204.0000219.
[20] Hu, B., Fang, H., Wang, F., & Zhai, K. (2019). Full-scale test and numerical simulation study on load-carrying capacity of prestressed concrete cylinder pipe (PCCP) with broken wires under internal water pressure. Engineering Failure Analysis, 104, 513–530. doi:10.1016/j.engfailanal.2019.06.049.
[21] Cheng, B., Dou, T., Xia, S., Zhao, L., Yang, J., & Zhang, Q. (2020). Mechanical properties and loading response of prestressed concrete cylinder pipes under internal water pressure. Engineering Structures, 216, 1–11. doi:10.1016/j.engstruct.2020.110674.
[22] Zhai, K., Guo, C., Fang, H., Li, B., Ma, B., Hu, Q., & Wang, F. (2021). Stress distribution and mechanical response of PCCP with broken wires. Engineering Structures, 245, 245. doi:10.1016/j.engstruct.2021.112858.
[23] Dong, X., Dou, T., Dong, P., Wang, Z., Li, Y., Ning, J., Wei, J., Li, K., & Cheng, B. (2022). Failure experiment and calculation model for prestressed concrete cylinder pipe under three-edge bearing test using distributed fiber optic sensors. Tunnelling and Underground Space Technology, 129, 129. doi:10.1016/j.tust.2022.104682.
[24] Li, K., Li, Y., Dong, P., Wang, Z., Dou, T., Ning, J., Dong, X., & Si, Z. (2022). Pressure test of a prestressed concrete cylinder pipe using distributed fiber optic sensors: Instrumentation and results. Engineering Structures, 270, 114835. doi:10.1016/j.engstruct.2022.114835.
[25] Li, K., Li, Y., Dong, P., Wang, Z., Dou, T., Ning, J., Dong, X., Si, Z., & Wang, J. (2022). Mechanical properties of prestressed concrete cylinder pipe with broken wires using distributed fiber optic sensors. Engineering Failure Analysis, 141, 106635. doi:10.1016/j.engfailanal.2022.106635.
[26] Li, H., & Feng, X. (2025). Numerical investigations into the damage mechanism and failure mode of large-scale PCCPs under internal pressure overload. Structural Concrete. doi:10.1002/suco.70044.
[27] Wang, X., Hu, S., Li, W., & Hu, Y. (2025). Rayleigh wave-based monitoring of mortar coating and concrete core cracking on prestressed concrete cylinder pipe under external pressure using piezoelectric lead zirconate titanate. Tunnelling and Underground Space Technology, 155, 155. doi:10.1016/j.tust.2024.106220.
[28] Deng, Z., & Liu, S. (2016). Test and modeling of ultra-high performance concrete confined by fiber reinforced polymer tube. Journal of Basic Science and Engineering, 24(4), 792–803. doi:10.16058/j.issn.1005-0930.2016.04.015.
[29] Lu, Y., Huang, Y., Liu, Z., & Wang, X. (2022). Research on Masonry Columns Strengthened with the Combination of Angle Steel and GFRP Under Axial Load. Yingyong Jichu Yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering, 30(3), 645–656. doi:10.16058/j.issn.1005-0930.2022.03.011.
[30] Xu, J., Chen, W., Huang, X., Chen, Z., & Tan, C. (2022). Calculation Approach of Ultimate Compressive Strain in FRP-Confined Concrete Based on Bayesian Modification. Yingyong Jichu Yu Gongcheng Kexue Xuebao/Journal of Basic Science and Engineering, 30(4), 974–986. doi:10.16058/j.issn.1005-0930.2022.04.015.
[31] Pandey, A. K. P. K., Dada, M., Patton, M. L., & Adak, D. (2024). A comparative review on the structural behaviour of GFRP rebars with conventional steel rebars in reinforced concrete columns. Innovative Infrastructure Solutions, 9(10), 373. doi:10.1007/s41062-024-01686-0.
[32] Lee, D. C., & Karbhari, V. M. (2005). Rehabilitation of large diameter prestressed cylinder concrete pipe (PCCP) with FRP composites - Experimental investigation. Advances in Structural Engineering, 8(1), 31–44. doi:10.1260/1369433053749634.
[33] Lee, Y., & Lee, E. T. (2013). Retrofit Design of Damaged Prestressed Concrete Cylinder Pipes. International Journal of Concrete Structures and Materials, 7(4), 265–271. doi:10.1007/s40069-013-0057-9.
[34] Hu, H., Niu, F., Dou, T., & Zhang, H. (2018). Rehabilitation effect evaluation of CFRP-lined prestressed concrete cylinder pipe under combined loads using numerical simulation. Mathematical Problems in Engineering, 2018, 1–17. doi:10.1155/2018/3268962.
[35] Hu, H., Dou, T., Niu, F., Zhang, H., & Su, W. (2019). Experimental and numerical study on CFRP-lined prestressed concrete cylinder pipe under internal pressure. Engineering Structures, 190, 480–492. doi:10.1016/j.engstruct.2019.03.106.
[36] Zhao, L., Dou, T., Cheng, B., Xia, S., Yang, J., Zhang, Q., Li, M., & Li, X. (2019). Experimental study on the reinforcement of prestressed concrete cylinder pipes with external prestressed steel strands. Applied Sciences (Switzerland), 9(1), 1–19. doi:10.3390/app9010149.
[37] Zhao, L., Dou, T., Cheng, B., Xia, S., Yang, J., Zhang, Q., Li, M., & Li, X. (2019). Theoretical study and application of the reinforcement of prestressed concrete cylinder pipes with external prestressed steel strands. Applied Sciences (Switzerland), 9(24), 5532. doi:10.3390/app9245532.
[38] Zhai, K., Fang, H., Guo, C., Ni, P., Fu, B., Wang, F., & Zhang, C. (2021). Strengthening of PCCP with broken wires using prestressed CFRP. Construction and Building Materials, 267, 120903. doi:10.1016/j.conbuildmat.2020.120903.
[39] Zhai, K., Fang, H., Guo, C., Ni, P., Wu, H., & Wang, F. (2021). Full-scale experiment and numerical simulation of prestressed concrete cylinder pipe with broken wires strengthened by prestressed CFRP. Tunnelling and Underground Space Technology, 115, 104021. doi:10.1016/j.tust.2021.104021.
[40] Zhai, K., Fang, H., Li, B., Guo, C., Yang, K., Du, X., Du, M., & Wang, N. (2023). Failure experiment on CFRP-strengthened prestressed concrete cylinder pipe with broken wires. Tunnelling and Underground Space Technology, 135, 105032. doi:10.1016/j.tust.2023.105032.
[41] Zhai, K., Fang, H., Yang, M., Sun, M., Zhang, X., Zhao, X., Xue, B., Lei, J., & Yao, X. (2023). The impacts of CFRP widths and thicknesses on the strengthening of PCCP. Structures, 56, 104856. doi:10.1016/j.istruc.2023.07.046.
[42] Hu, H., Dou, T., Niu, F., Zhang, H., & Su, W. (2019). Experimental and numerical study on CFRP-lined prestressed concrete cylinder pipe under internal pressure. Engineering Structures, 190, 480-492. doi:10.1016/j.engstruct.2019.03.106.
[43] Zhai, K., Fang, H., Guo, C., Li, B., Wang, N., Yang, K., Zhang, X., Du, X., & Di, D. (2024). Using EPS and CFRP liner to strengthen prestressed concrete cylinder pipe. Construction and Building Materials, 412, 134860. doi:10.1016/j.conbuildmat.2024.134860.
[44] Spring, D. W., & Paulino, G. H. (2014). A growing library of three-dimensional cohesive elements for use in ABAQUS. Engineering Fracture Mechanics, 126, 190-216. doi:10.1016/j.engfracmech.2014.04.004.
[45] Wang, G. D., & Melly, S. K. (2018). Three-dimensional finite element modeling of drilling CFRP composites using Abaqus/CAE: a review. The International Journal of Advanced Manufacturing Technology, 94, 599-614. doi:10.1007/s00170-017-0754-7.
[46] Zhai, K., Fang, H., Guo, C., Fu, B., Ni, P., Ma, H., He, H., & Wang, F. (2021). Mechanical properties of CFRP-strengthened prestressed concrete cylinder pipe based on multi-field coupling. Thin-Walled Structures, 162, 107629. doi:10.1016/j.tws.2021.107629.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.