Performance Characterization for Polymer Modified Bitumen Contained Newly Used Terpolymer
Downloads
Polymer-modified bitumen (PMB) plays a vital role in extending the service life of hot mix asphalt (HMA) used in flexible pavement construction. Several types of polymers have been used to produce PMB, among which styrene–butadiene–styrene (SBS) is the most widely used. However, the use of SBS in PMB production presents several limitations, including storage stability issues, high mixing temperatures, and the requirement for a relatively high modifier content. The present research investigated the use of a new terpolymer, EVA-GMA (LOTADER® AX8670T), for PMB production and compared the resulting PMB with PMB produced using 4% SBS polymer. Rheological, performance, and chemical composition tests were conducted on neat bitumen as well as PMB modified with EVA-GMA and SBS. The results indicated that the optimal LOTADER® AX8670T content required to produce PMB was 2.5%. In addition, storage stability increased by 11% compared to 4% SBS-modified PMB. The viscosity was found to be 50% higher than that of asphalt modified with 4% SBS-PMB and 100% higher than that of unmodified asphalt. The performance grade (PG) was determined to be PG 82-10 for both PMB types, while unmodified bitumen exhibited a PG of 76-10. Based on these results, it can be concluded that PMB produced with LOTADER® AX8670T can perform comparably to SBS-modified PMB while requiring a lower modifier content, lower mixing temperatures, and offering improved storage stability, thereby enhancing economic, production, and environmental aspects.
Downloads
[1] Chen, M., Geng, J., Xia, C., He, L., & Liu, Z. (2021). A review of phase structure of SBS modified asphalt: Affecting factors, analytical methods, phase models and improvements. Construction and Building Materials, 294, 123610. doi:10.1016/j.conbuildmat.2021.123610.
[2] Polacco, G., Stastna, J., Biondi, D., & Zanzotto, L. (2006). Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Current Opinion in Colloid & Interface Science, 11(4), 230–245. doi:10.1016/j.cocis.2006.09.001.
[3] Wu, S., & Montalvo, L. (2021). Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review. Journal of Cleaner Production, 280, 124355. doi:10.1016/j.jclepro.2020.124355.
[4] Al-Ghurabi, S. B., & Al-Humeidawi, B. H. (2021). Comparative evaluation for the effect of particles size of reclaimed asphalt pavement (RAP) on the properties of HMA. Journal of Physics: Conference Series, 1895(1), 12025. doi:10.1088/1742-6596/1895/1/012025.
[5] Montagner de Barros, L., Alberto Herrmann do Nascimento, L., Thiago Sacramento Aragão, F., Shane Underwood, B., & do Canto Pivetta, F. (2022). Characterization of the permanent deformation of asphalt mixtures based on indexes and on pavement structural performance. Construction and Building Materials, 326, 126555. doi:10.1016/j.conbuildmat.2022.126555.
[6] Xu, J., Guo, Z., Lu, G., Fan, Z., Wang, D., & Oeser, M. (2022). Reclamation of waste oils in asphalt modification towards enhanced low-temperature performance of pavement in cold region. International Journal of Pavement Engineering, 24(2), 2069244. doi:10.1080/10298436.2022.2069244.
[7] Behnood, A., & Modiri Gharehveran, M. (2019). Morphology, rheology, and physical properties of polymer-modified asphalt binders. European Polymer Journal, 112, 766–791. doi:10.1016/j.eurpolymj.2018.10.049.
[8] Yan, C., Yan, J., Zhang, Z., Yu, D., Wang, S., Jiang, X., Ai, C., & Leng, Z. (2024). Screw extrusion process used in the polymer modified asphalt field: A review. Journal of Cleaner Production, 448, 141592. doi:10.1016/j.jclepro.2024.141592.
[9] Yan, K., Chen, J., You, L., & Tian, S. (2020). Characteristics of compound asphalt modified by waste tire rubber (WTR) and ethylene vinyl acetate (EVA): Conventional, rheological, and microstructural properties. Journal of Cleaner Production, 258, 120732. doi:10.1016/j.jclepro.2020.120732.
[10] Sojobi, A. O., Nwobodo, S. E., & Aladegboye, O. J. (2016). Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete. Cogent Engineering, 3(1), 1133480. doi:10.1080/23311916.2015.1133480.
[11] Lin, P., Huang, W., Tang, N., & Xiao, F. (2017). Performance characteristics of Terminal Blend rubberized asphalt with SBS and polyphosphoric acid. Construction and Building Materials, 141, 171–182. doi:10.1016/j.conbuildmat.2017.02.138.
[12] Azahar, N. M., Hassan, N. A., Jaya, R. P., Hainin, M. R., Yusoff, N. I. M., Kamaruddin, N. H. M., Yunus, N. Z. M., Hassan, S. A., & Yaacob, H. (2021). Properties of cup lump rubber modified asphalt binder. Road Materials and Pavement Design, 22(6), 1329–1349. doi:10.1080/14680629.2019.1687007.
[13] Othman, Z., Hainin, M. R., Warid, M. N. M., Idham, M. K., & Kamarudin, S. N. N. (2018). Cup lump modified asphalt mixture along jalan Kuala Lumpur-Kuantan, daerah Temerloh, Pahang. MATEC Web of Conferences, 250, 2007. doi:10.1051/matecconf/201825002007.
[14] Al-Humeidawi, B. H., Chafat, O. H., & Kadhim, H. A. (2021). Characterizing the Properties of Sustainable Semi-Flexible Pavement Produced with Polymer Modified Bitumen. Periodicals of Engineering and Natural Sciences, 9(2), 1064–1072. doi:10.21533/pen.v9i2.2054.
[15] Lewandowski, L. H. (1994). Polymer modification of paving asphalt binders. Rubber Chemistry and Technology, 67(3), 447–480. doi:10.5254/1.3538685.
[16] Ali, N., Zahran, S., Trogdon, J., & Bergan, A. (1994). A mechanistic evaluation of modified asphalt paving mixtures. Canadian Journal of Civil Engineering, 21(6), 954–965. doi:10.1139/l94-101.
[17] Yang, Q., Lin, J., Wang, X., Wang, D., Xie, N., & Shi, X. (2024). A review of polymer-modified asphalt binder: Modification mechanisms and mechanical properties. Cleaner Materials, 12, 100255. doi:10.1016/j.clema.2024.100255.
[18] Roja, K. L., & Masad, E. (2019). Influence of Chemical Constituents of Asphalt Binders on Their Rheological Properties. Transportation Research Record, 2673(6), 458–466. doi:10.1177/0361198119851458.
[19] Liang, M., Xin, X., Fan, W., Zhang, J., Jiang, H., & Yao, Z. (2021). Comparison of rheological properties and compatibility of asphalt modified with various polyethylene. International Journal of Pavement Engineering, 22(1), 11–20. doi:10.1080/10298436.2019.1575968.
[20] Zhang, F., & Hu, C. (2013). The research for SBS and SBR compound modified asphalts with polyphosphoric acid and sulfur. Construction and Building Materials, 43, 461–468. doi:10.1016/j.conbuildmat.2013.03.001.
[21] Wen, G., Zhang, Y., Zhang, Y., Sun, K., & Fan, Y. (2002). Improved properties of SBS-modified asphalt with dynamic vulcanization. Polymer Engineering & Science, 42(5), 1070–1081. doi:10.1002/pen.11013.
[22] Zhu, J., Lu, X., & Kringos, N. (2018). Experimental investigation on storage stability and phase separation behaviour of polymer-modified bitumen. International Journal of Pavement Engineering, 19(9), 832–841. doi:10.1080/10298436.2016.1211870.
[23] Chen, C., Quan, X., Ma, T., Lu, J., & Zhang, Y. (2024). Evaluation of Modified Asphalt Binders with Soybean Oil-Based Polymers: Preparation Temperature and Rheological Characterization. Journal of Molecular Liquids, 403, 124898. doi:10.1016/j.molliq.2024.124898.
[24] Issa, M. Al, Goli, A., Revelli, V., Ali, A., & Mehta, Y. (2025). Influence of softening agents on low and intermediate temperature cracking properties of highly polymer modified asphalt binders. Construction and Building Materials, 490, 142404. doi:10.1016/j.conbuildmat.2025.142404.
[25] Lin, P., Liu, X., Ren, S., Li, Y., Xu, J., & Li, M. (2023). Unraveling the influence of fibers on aging susceptibility and performance of high content polymer modified asphalt mixtures. Case Studies in Construction Materials, 18, 2211. doi:10.1016/j.cscm.2023.e02211.
[26] Al-Nawasir, R. I., & Al-Humeidawi, B. H. (2023). A scientometric study and a bibliometric review of the literature on the design and construction of semi-flexible pavement. Al-Qadisiyah Journal for Engineering Sciences, 16(2), 82–91. doi:10.30772/qjes.v16i2.921.
[27] Wu, W., Jiang, W., Xiao, J., Yuan, D., Wang, T., & Ling, X. (2024). Investigation of LAS-based fatigue evaluation methods for high-viscosity modified asphalt binders with high-content polymers. Construction and Building Materials, 422, 135810. doi:10.1016/j.conbuildmat.2024.135810.
[28] Fu, Z., Song, R., Qin, W., Shi, K., Ma, F., Li, J., & Li, C. (2025). Investigation on the low temperature rheological properties of polymer modified asphalt. Journal of Traffic and Transportation Engineering, 12(2), 319–330. doi:10.1016/j.jtte.2023.02.010.
[29] Zhu, J., Birgisson, B., & Kringos, N. (2014). Polymer modification of bitumen: Advances and challenges. European Polymer Journal, 54(1), 18–38. doi:10.1016/j.eurpolymj.2014.02.005.
[30] Aljanadi, B., Miskeen, M. B., & Abosalah, S. (2020). Modification of hot mix asphalt using ethylene vinyl acetate (EVA) for hot and arid regions. Journal of Pure & Applied Sciences, 19(5), 195-207.
[31] Sharma, A., Pandey, A., Ransinchung R. N., G. D., & Ravindranath, S. S. (2024). Property deterioration in reactive elastomeric terpolymer modified binders during storage at elevated temperatures. Materials and Structures, 57(2), 32. doi:10.1617/s11527-024-02307-z.
[32] Kareem, Z. M. (2024). Evaluation of Effect of High RAP Contents on Structural and Engineering Properties of Pavement Layers Modified with Sustainable Materials and Polymers. Master Thesis, Al-Nahrain University, Baghdad, Iraq.
[33] Asphalt Institute (2014). MS-2 asphalt mix design methods: Asphalt Institute Manual Series No. 02, Lexington Kentucky, United States.
[34] Liu, K., Zhang, K., Wu, J., Muhunthan, B., & Shi, X. (2018). Evaluation of mechanical performance and modification mechanism of asphalt modified with graphene oxide and warm mix additives. Journal of Cleaner Production, 193, 87–96. doi:10.1016/j.jclepro.2018.05.040.
[35] Huang, Y., Yao, K., Zhang, Q., Huang, X., Chen, Z., Zhou, Y., & Yu, X. (2024). Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chemical Society Reviews, 53(17), 8632–8712. doi:10.1039/d4cs00413b.
[36] Säckl, G., Wallner, G. M., Duchoslav, J., Tiefenthaler, M., & Stifter, D. (2024). Advanced analysis of ethylene vinyl acetate copolymer materials for photovoltaic modules. Polymer Testing, 132, 108381. doi:10.1016/j.polymertesting.2024.108381.
[37] Soni, D. K., Maithani, A., & Kamani, P. K. (2022). Formation of urethane linkage using copolymers of glycidyl methacrylate, methyl methacrylate, and butyl acrylate. Materials Today: Proceedings, 68, 658–663. doi:10.1016/j.matpr.2022.05.309.
[38] Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1–2), 42–82. doi:10.1016/j.cis.2008.08.011.
[39] Ma, L., Varveri, A., Jing, R., & Erkens, S. (2023). Chemical characterisation of bitumen type and ageing state based on FTIR spectroscopy and discriminant analysis integrated with variable selection methods. Road Materials and Pavement Design, 24(sup1), 506–520. doi:10.1080/14680629.2023.2181008.
[40] Sujka, K., Koczoń, P., Ceglińska, A., Reder, M., & Ciemniewska-Zytkiewicz, H. (2017). The Application of FT-IR Spectroscopy for Quality Control of Flours Obtained from Polish Producers. Journal of Analytical Methods in Chemistry, 2017(1), 4315678. doi:10.1155/2017/4315678.
[41] Pyshyev, S., Gunka, V., Grytsenko, Y., & Bratychak, M. (2016). Polymer Modified Bitumen: Review. Chemistry & Chemical Technology, 10(4s), 631–636. doi:10.23939/chcht10.04si.631.
[42] Al-Nawasir, R. I., & Al-Humeidawi, B. H. (2023). Qualitative Evaluation for Asphalt Binder Modified with SBS Polymer. Tikrit Journal of Engineering Sciences, 30(4), 88–101. doi:10.25130/tjes.30.4.10.
[43] Sagitova, G. F., Ainabekov, N. B., Daurenbek, N. M., Assylbekova, D. D., Sadyrbayeva, A. S., Bitemirova, A. E., & Takibayeva, G. A. (2024). Modified Bitumen Materials from Kazakhstani Oilfield. Advances in Polymer Technology, 2024, 1–10. doi:10.1155/2024/8078021.
[44] Werkovits, S., Primerano, K., Bacher, M., Rosenau, T., Hofko, B., & Grothe, H. (2025). An analytical framework to assess the chemical changes in polymer-modified bitumen upon natural and simulated ageing. Fuel, 381, 133257. doi:10.1016/j.fuel.2024.133257.
[45] Sakib, N., Islam, S., Kabir, S. Bin, Yasmin, S., Kaysar, M. M., Chowdhury, J. P., & Rahman, M. M. (2025). Evaluating Torsional Recovery test for interlinkage with deformation-recovery measurement metrics of polymer modified bitumen. Cleaner Materials, 16, 100309. doi:10.1016/j.clema.2025.100309.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















