Experimental and Bearing Capacity Research on Prestressed Shape Memory Alloy Strips Confined Concrete Column
Downloads
The prestressed shape memory alloy (SMA) strips confined columns are a novel reinforcement method, which not only exerts active confinement stress on the core concrete but also avoids the common stress hysteresis problem in reinforcement. This paper performed axial compression tests on eight sets of concrete columns with varying SMA strip width, net spacing, and pre-strain, and the impacts of these variables regarding the failure pattern, bearing capacity, and deformability of the specimens were investigated. A calculation model for the bearing capacity of SMA strips actively confined to concrete columns was established and contrasted with the prediction performance of the BP neural network. The results indicate that compared to the unconfined column, SMA strip-confined columns exhibit obvious ductile failure under compression, with the highest increase of bearing capacity and deformability reaching up to 20.27% and 24.96%, respectively. The confinement effect becomes better and better with the increasing strip width or the decreasing strip net spacing. When the strip pre-strain gradually increases, the bearing capacity of confined columns gradually improves, while the deformability first enhances and then weakens. The experimental data of other scholars is used to verify that the calculation results accord with the experimental results well, and the prediction precision of the proposed calculation model exceeds that of the BP neural network. Meanwhile, it is confirmed that the BP neural network exhibits a high fitting level in bearing capacity prediction (R2training=0.990 and R2test=0.965), offering a novel approach for predicting the bearing capacity of structures.
Downloads
[1] Cheng, S., Han, J., & He, H. (2025). Experimental, theoretical and numerical studies of damaged RC columns repaired with modified concrete and textile. Construction and Building Materials, 466, 140328. doi:10.1016/j.conbuildmat.2025.140328.
[2] Xu, R., Chen, Z., & Ning, F. (2025). Axial compression mechanism and numerical analysis of CFRP-PVC tube and I-shaped steel composite confined concrete column. Construction and Building Materials, 461, 139931. doi:10.1016/j.conbuildmat.2025.139931.
[3] He, F., Li, C., Chen, B., Briseghella, B., & Xue, J. (2024). Axial compression behavior of steel tube reinforced concrete column. Engineering Structures, 303, 117548. doi:10.1016/j.engstruct.2024.117548.
[4] Bui, V. T., & Kim, S. E. (2021). Nonlinear inelastic analysis of semi-rigid steel frames with circular concrete-filled steel tubular columns. International Journal of Mechanical Sciences, 196, 106273. doi:10.1016/j.ijmecsci.2021.106273.
[5] Li, H., Wei, Y., Hu, Y., Zhao, L., Wang, G., & Zhang, Y. (2024). Experimental and theoretical analysis of FRP-confined square lightweight aggregate concrete columns under axial compression. Case Studies in Construction Materials, 20, 2982. doi:10.1016/j.cscm.2024.e02982.
[6] Zeng, J. J., Ye, Y. Y., Liu, W. Te, Zhuge, Y., Liu, Y., & Yue, Q. R. (2023). Behaviour of FRP spiral-confined concrete and contribution of FRP longitudinal bars in FRP-RC columns under axial compression. Engineering Structures, 281(15), 115747. doi:10.1016/j.engstruct.2023.115747.
[7] Zhou, C., Chen, Z., Shi, S. Q., & Cai, L. (2018). Behavior of concrete columns confined with both steel angles and spiral hoops under axial compression. Steel and Composite Structures, 27(6), 747–759. doi:10.12989/scs.2018.27.6.747.
[8] Si, J., Wu, L., & Guo, W. (2021). Axial compression of reinforced concrete columns strengthened by composite of prestressed plastic-steel strip and angle steel: An experimental study. Structural Concrete, 22(6), 3620–3629. doi:10.1002/suco.202000786.
[9] Wang, H., Zhou, X., & Wang, L. (2019). Experimental investigation of damaged circular reinforced concrete columns with pre-tensioned steel hoops. Engineering Structures, 197, 109384. doi:10.1016/j.engstruct.2019.109384.
[10] Verderame, G. M., Ricci, P., De Risi, M. T., & Del Gaudio, C. (2022). Experimental response of unreinforced exterior RC joints strengthened with prestressed steel strips. Engineering Structures, 251, 113358. doi:10.1016/j.engstruct.2021.113358.
[11] Yan-xia, Z., Zhe-wen, H., Yang-long, L., Bo-wen, J., Xiao-tian, C., & Meng-yao, C. (2022). Experimental and numerical investigation of prefabricated prestressed vertical steel strand core tube flange column connection joint. Journal of Constructional Steel Research, 190, 107124. doi:10.1016/j.jcsr.2021.107124.
[12] Wei, Y., Xu, P., Zhang, Y., Wang, G., & Zheng, K. (2022). Compressive behaviour of FRP-steel wire mesh composite tubes filled with seawater and sea sand concrete. Construction and Building Materials, 314, 7763. doi:10.1016/j.conbuildmat.2021.125608.
[13] Chen, C., Fang, H., Lim, Y. M., Xie, H., Chen, J., & Park, J. W. (2025). Experimental and numerical studies on compressive behavior of winding FRP grid spiral stirrups confined circular concrete columns. Composites Part A: Applied Science and Manufacturing, 191, 108709. doi:10.1016/j.compositesa.2025.108709.
[14] Wang, Z., Li, Z., & Feng, P. (2023). Cyclic axial compressive performance of the RC columns reinforced with FRP confined concrete core encased rebar. Engineering Structures, 274, 115166. doi:10.1016/j.engstruct.2022.115166.
[15] Wang, D., Gu, J., Tao, Y., & Shi, Q. (2025). Axial compression behavior of FRP confined steel reinforced UHPC column. Engineering Structures, 328, 119747. doi:10.1016/j.engstruct.2025.119747.
[16] Shi, M., Xu, G., Zhao, J., & Xu, L. (2024). The study on bond-slip constitutive model of shape memory alloy fiber-reinforced concrete. Construction and Building Materials, 418, 135395. doi:10.1016/j.conbuildmat.2024.135395.
[17] Xu, L., Zhu, M., Zhao, J., Shi, M., & Chen, M. (2025). Study on axial compressive damage performance of SMA strips confined concrete columns by acoustic emission technology. Smart Materials and Structures, 34(2), 25038. doi:10.1088/1361-665X/adabcc.
[18] Xu, L., Zhu, M., Zhao, J., Chen, M., & Shi, M. (2025). Axial stress-strain behavior of shape memory alloy strips constrained concrete columns. Structures, 72, 10822. doi:10.1016/j.istruc.2025.108225.
[19] Qian, H., Yang, M. T., Shi, Y., Ye, Y. X., & Wu, B. (2025). Research on the seismic performance of self-centering concrete-filled superelastic Cu-based SMA tube columns. Structures, 74, 108516. doi:10.1016/j.istruc.2025.108516.
[20] Molod, M. A., Spyridis, P., & Barthold, F. J. (2022). Applications of shape memory alloys in structural engineering with a focus on concrete construction – A comprehensive review. Construction and Building Materials, 337, 127565. doi:10.1016/j.conbuildmat.2022.127565.
[21] Liu, Z., Zhu, H., Zeng, Y., Dong, Z., Ji, J., Wu, G., & Zhao, X. (2024). Study on the flexural properties of T-shaped concrete beams reinforced with iron-based shape memory alloy rebar. Engineering Structures, 306, 117792. doi:10.1016/j.engstruct.2024.117792.
[22] Hong, H., Gencturk, B., Saiidi, M. S., Zheng, B., & Pan, X. (2025). Seismic performance of self-centering columns post-tensioned with iron-based shape memory alloy (FeSMA) bars. Engineering Structures, 334, 12021. doi:10.1016/j.engstruct.2025.120218.
[23] Jung, D., Wilcoski, J., & Andrawes, B. (2018). Bidirectional shake table testing of RC columns retrofitted and repaired with shape memory alloy spirals. Engineering Structures, 160, 171–185. doi:10.1016/j.engstruct.2017.12.046.
[24] Abdelrahman, K., & El-Hacha, R. (2020). Analytical prediction model for circular SMA-confined reinforced concrete columns. Engineering Structures, 213, 110547. doi:10.1016/j.engstruct.2020.110547.
[25] Zerbe, L., Vieira, D., Belarbi, A., & Senouci, A. (2022). Uniaxial compressive behavior of circular concrete columns actively confined with Fe-SMA strips. Engineering Structures, 255, 113878. doi:10.1016/j.engstruct.2022.113878.
[26] Chen, Q., & Andrawes, B. (2017). Cyclic Stress–Strain Behavior of Concrete Confined with NiTiNb-Shape Memory Alloy Spirals. Journal of Structural Engineering, 143(5), 4017008. doi:10.1061/(asce)st.1943-541x.0001728.
[27] Chen, Q., Shin, M., & Andrawes, B. (2014). Experimental study of non-circular concrete elements actively confined with shape memory alloy wires. Construction and Building Materials, 61, 303–311. doi:10.1016/j.conbuildmat.2014.02.076.
[28] Vieira, D., Zerbe, L., & Belarbi, A. (2023). Numerical modeling of iron-based SMA confined concrete columns under axial compressive loading. Engineering Structures, 275, 115185. doi:10.1016/j.engstruct.2022.115185.
[29] Chen, Q., & Andrawes, B. (2017). Plasticity Modeling of Concrete Confined With NiTiNb Shape Memory Alloy Spirals. Structures, 11, 1–10. doi:10.1016/j.istruc.2017.03.006.
[30] Yeon, Y., Ji, S., & Hong, K. (2024). Uniaxial compressive behavior of concrete column actively confined with internal Fe-SMA spirals. Construction and Building Materials, 418, 135393. doi:10.1016/j.conbuildmat.2024.135393.
[31] Cui, C., Dong, Z., Zhu, H., Zhao, Y., Han, T., Pan, Y., & Ghafoori, E. (2025). Axial compressive behavior of UHPC columns reinforced with self-prestressed Fe-SMA spiral stirrups. Structures, 77, 109107. doi:10.1016/j.istruc.2025.109107.
[32] Hong, H., Gencturk, B., Belarbi, A., & Vieira, D. (2025). Active confinement of large-scale reinforced concrete columns using iron-based shape memory alloy (FeSMA) strips. Journal of Building Engineering, 108, 12848. doi:10.1016/j.jobe.2025.112848.
[33] Han, T., Dong, Z., Zhu, H., Cui, C., & Zhao, O. (2025). Compression performance of FRP externally wrapped Fe-SMA strips confined concrete columns under large eccentric load. Structures, 74, 108554. doi:10.1016/j.istruc.2025.108554.
[34] GB/T 50081-2019. (2019). Standard for test methods of concrete physical and mechanical properties. Ministry of Housing and Urban Rural Development, Beijing, China.
[35] GB/T 39985-2021. (2021). Titanium-nickel shape memory alloy plate. State Administration for Market Regulation and Standardization Administration. Ministry of Housing and Urban Rural Development, Beijing, China.
[36] GB/T 228.1-2021. (2021). Metallic Materials-Tensile testing-Part 1: Method of test at room temperature. State Administration for Market Regulation and Standardization Administration. Ministry of Housing and Urban Rural Development, Beijing, China.
[37] Choi, E., Chung, Y. S., Cho, B. S., & Nam, T. H. (2008). Confining concrete cylinders using shape memory alloy wires. European Physical Journal: Special Topics, 158(1), 255–259. doi:10.1140/epjst/e2008-00684-0.
[38] Choi, E., Nam, T. H., Cho, S. C., Chung, Y. S., & Park, T. (2008). The behavior of concrete cylinders confined by shape memory alloy wires. Smart Materials and Structures, 17(6), 65032. doi:10.1088/0964-1726/17/6/065032.
[39] Andrawes, B., Shin, M., & Wierschem, N. (2010). Active Confinement of Reinforced Concrete Bridge Columns Using Shape Memory Alloys. Journal of Bridge Engineering, 15(1), 81–89. doi:10.1061/(asce)be.1943-5592.0000038.
[40] Tran, H., Balandraud, X., & Destrebecq, J. F. (2015). Improvement of the mechanical performances of concrete cylinders confined actively or passively by means of SMA wires. Archives of Civil and Mechanical Engineering, 15(1), 292–299. doi:10.1016/j.acme.2014.04.009.
[41] Cusson, D., & Paultre, P. (1994). High‐Strength Concrete Columns Confined by Rectangular Ties. Journal of Structural Engineering, 120(3), 783–804. doi:10.1061/(asce)0733-9445(1994)120:3(783).
[42] Shin, M., & Andrawes, B. (2010). Experimental investigation of actively confined concrete using shape memory alloys. Engineering Structures, 32(3), 656–664. doi:10.1016/j.engstruct.2009.11.012.
[43] Saatcioglu, M., & Razvi, S. R. (1992). Strength and Ductility of Confined Concrete. Journal of Structural Engineering, 118(6), 1590–1607. doi:10.1061/(asce)0733-9445(1992)118:6(1590).
[44] Richart, F. E., Brandtzaeg, A., & Brown, R. L. (1928). A study of the failure of concrete under combined compressive stresses. Engineering Experiment Station. Bulletin; no. 185, University of Illinois, Champaign, United States.
[45] Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical Stress‐Strain Model for Confined Concrete. Journal of Structural Engineering, 114(8), 1804–1826. doi:10.1061/(asce)0733-9445(1988)114:8(1804).
[46] Lim, J. C., & Ozbakkaloglu, T. (2014). Stress-strain model for normal- and light-weight concretes under uniaxial and triaxial compression. Construction and Building Materials, 71, 492–509. doi:10.1016/j.conbuildmat.2014.08.050.
[47] Fardis, M. N., & Khalili, H. H. (1982). FRP-encased concrete as a structural material. Magazine of Concrete Research, 34(121), 191–202. doi:10.1680/macr.1982.34.121.191.
[48] Zhang, B., Yang, Y., & Xia, Z. (2021). Axial Compressive Performance of Concrete Column Reinforced by Prestressed Steel Strips. Bulletin of the Chinese Ceramic Society, 40(7), 2200–2208. doi:10.16552/j.cnki.issn1001-1625.2021.07.003.
[49] Pan, Y., Rui, G., Li, H., Tang, H., & Xu, L. (2017). Study on stress-strain relation of concrete confined by CFRP under preload. Engineering Structures, 143, 52–63. doi:10.1016/j.engstruct.2017.04.004.
[50] Qu, D. C., & Chang, W. (2024). Peak stress and peak strain evaluation of concrete columns confined with lateral ties under axial compression by artificial neural networks. Soft Computing, 28(6), 5591–5608. doi:10.1007/s00500-023-09357-5.
[51] Cascardi, A., Micelli, F., & Aiello, M. A. (2017). An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns. Engineering Structures, 140, 199–208. doi:10.1016/j.engstruct.2017.02.047.
[52] Li, S., Zheng, W., Xu, T., & Wang, Y. (2022). Artificial neural network model for predicting the local compression capacity of stirrups-confined concrete. Structures, 41, 943–956. doi:10.1016/j.istruc.2022.05.055.
[53] Yan, F., Lin, Z., Wang, X., Azarmi, F., & Sobolev, K. (2017). Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm. Composite Structures, 161, 441–452. doi:10.1016/j.compstruct.2016.11.068.
[54] Raza, A., El Ouni, M. H., Baili, J., & uz Zaman Khan, Q. (2022). Data-driven analysis on axial strength of GFRP-NSC columns based on practical artificial neural network tool. Composite Structures, 291, 115598. doi:10.1016/j.compstruct.2022.115598.
[55] Yuan, Z., Niu, M. Q., Ma, H., Gao, T., Zang, J., Zhang, Y., & Chen, L. Q. (2023). Predicting mechanical behaviors of rubber materials with artificial neural networks. International Journal of Mechanical Sciences, 249, 108265. doi:10.1016/j.ijmecsci.2023.108265.
[56] Bahrami, B., Talebi, H., Ayatollahi, M. R., & Khosravani, M. R. (2023). Artificial neural network in prediction of mixed-mode I/II fracture load. International Journal of Mechanical Sciences, 248, 108214. doi:10.1016/j.ijmecsci.2023.108214.
[57] Ma, Y., Mi, J., Yang, X., Sun, Z., & Liu, C. (2024). Prediction model and sensitivity analysis of ultimate drift ratio for rectangular reinforced concrete columns failed in flexural-shear based on BP-Garson algorithm. Structures, 60, 105808. doi:10.1016/j.istruc.2023.105808.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.