Pre- and Post-Cracking Resistance of Steel Fiber Reinforced Concrete Flexural Members with GFRP Bars
Downloads
This research investigates the pre- and post-cracking resistance of steel fiber-reinforced concrete specimens with Glass Fiber Reinforced Polymer (GFRP) bars subjected to flexural loading. The purpose is to modify the ductility and cracking resistance of GFRP-reinforced beams, which are prone to early cracking and excessive deflections instigated by the low modulus of elasticity of GFRP. Six self-compacting concrete specimens (1500×240×200 mm), incorporating steel fibers of two lengths (25 mm and 40 mm) with varying distribution depths, were tested to assess their structural performance. The results indicate significant enhancements in cracking resistance, stiffness, energy absorption, ductility, and flexural strength. Tested beams reinforced with 40 mm-long steel fibers exhibited a 23.9%–24.2% development in the ultimate moment capacity associated with the steel-reinforced specimens, whereas those with 25 mm fibers showed smaller increases (2.7%–3.1%). The cracking resistance improved by up to 33.3% in beams with 40 mm-long fibers and by 16.67%–20% in those with 25 mm-long fibers, associated with a non-fibrous GFRP specimen. Additionally, the inclusion of 40 mm hooked-end steel fibers significantly enhanced ultimate deflection, with peak deflections increasing by 30.2%–44.8% compared to steel-reinforced beams. Fibrous GFRP-reinforced beams exhibited up to 154% higher energy absorption under ultimate load than a non-fibrous GFRP beam. All fibrous GFRP-reinforced beams achieved deformation-based ductility indices between 4.2 and 6.9, exceeding the minimum threshold of 4 for adequate deformability. These findings confirm that incorporating 40 mm steel fibers significantly improves the structural behavior of GFRP-reinforced concrete specimens, offering valuable insights for optimizing their design.
Downloads
[1] Franceschini, L., Vecchi, F., Tondolo, F., Belletti, B., & Sánchez Montero, J. (2022). Mechanical behaviour of corroded strands under chloride attack: A new constitutive law. Construction and Building Materials, 316. doi:10.1016/j.conbuildmat.2021.125872.
[2] Yardim, Y., Yilmaz, S., Corradi, M., & Thanoon, W. A. (2023). Strengthening of Reinforced Concrete Non-Circular Columns with FRP. Materials, 16(21), 6973. doi:10.3390/ma16216973.
[3] Makhlouf, M. H., Ismail, G., Abdel Kreem, A. H., & Badawi, M. I. (2023). Investigation of transverse reinforcement for R.C flat slabs against punching shear and comparison with innovative strengthening technique using FRP ropes. Case Studies in Construction Materials, 18, 1935. doi:10.1016/j.cscm.2023.e01935.
[4] Mohammad, A. Q., & Abbas, R. M. (2023). Structural Behavior of Prestressed RC Dapped Beam with Openings Strengthened Using CFRP Sheets. E3S Web of Conferences, 427, 1–9. doi:10.1051/e3sconf/202342702004.
[5] El-Hassan, H., El Maaddawy, T., & Šišková, A. (2019). Microstructure Characteristics of GFRP Reinforcing Bars in Harsh Environment. Advances in Materials Science and Engineering, 2019, 8053843. doi:10.1155/2019/8053843.
[6] Benmokrane, B., Chaallal, O., & Masmoudi, R. (1995). Glass fibre reinforced plastic (GFRP) rebars for concrete structures. Construction and Building Materials, 9(6), 353–364. doi:10.1016/0950-0618(95)00048-8.
[7] Wu, T., Sun, Y., Liu, X., & Wei, H. (2019). Flexural behavior of steel fiber–reinforced lightweight aggregate concrete beams reinforced with glass fiber–reinforced polymer bars. Journal of Composites for Construction, 23(2), 04018081. doi:10.1061/(ASCE)CC.1943-5614.0000920.
[8] Saikia, B., Kumar, P., Thomas, J., Rao, K. S. N., & Ramaswamy, A. (2007). Strength and serviceability performance of beams reinforced with GFRP bars in flexure. Construction and Building Materials, 21(8), 1709–1719. doi:10.1016/j.conbuildmat.2006.05.021.
[9] Issa, M. S., Metwally, I. M., & Elzeiny, S. M. (2011). Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars. Engineering Structures, 33(5), 1754–1763. doi:10.1016/j.engstruct.2011.02.014.
[10] ACI 440.1R-15. (2015). Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer (FRP) Bars. American Concrete Institute (ACI), Farmington Hills, United States.
[11] CSA S806:12 (R2021). (2021). Design and Construction of Building structures with Fibre-Reinforced Polymer. Canadian Standards Association (CSA), Toronto, Canada.
[12] ACI CODE-440.11-22. (2022). Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars—Code and Commentary. American Concrete Institute (ACI), Farmington Hills, United States.
[13] Alsayed, S. H., Al-Salloum, Y. A., & Almusallam, T. H. (2000). Performance of glass fiber reinforced plastic bars as a reinforcing material for concrete structures. Composites Part B: Engineering, 31(6–7), 555–567. doi:10.1016/S1359-8368(99)00049-9.
[14] Tavares, D. H., Giongo, J. S., & Paultre, P. (2008). Behavior of reinforced concrete beams reinforced with GFRP bars. Revista IBRACON de Estruturas e Materiais, 1(3), 285–295. doi:10.1590/s1983-41952008000300004.
[15] Pecce, M., Manfredi, G., & Cosenza, E. (2000). Experimental Response and Code Models of GFRP RC Beams in Bending. Journal of Composites for Construction, 4(4), 182–190. doi:10.1061/(asce)1090-0268(2000)4:4(182).
[16] Toutanji, H. A., & Saafi, M. (2000). Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars. ACI Structural Journal, 97(5), 712–719. doi:10.14359/8806.
[17] Rasheed, H. A., Nayal, R., & Melhem, H. (2004). Response prediction of concrete beams reinforced with FRP bars. Composite Structures, 65(2), 193–204. doi:10.1016/j.compstruct.2003.10.016.
[18] Yost, J. R., & Gross, S. P. (2002). Flexural design methodology for concrete beams reinforced with fiber-reinforced polymers. ACI Structural Journal, 99(3), 308–316. doi:10.14359/11914.
[19] Adam, M. A., Said, M., Mahmoud, A. A., & Shanour, A. S. (2015). Analytical and experimental flexural behavior of concrete beams reinforced with glass fiber reinforced polymers bars. Construction and Building Materials, 84, 354–366. doi:10.1016/j.conbuildmat.2015.03.057.
[20] Naveen Kumar, G., & Sundaravadivelu, K. (2017). Experimental Study On Flexural Behaviour Of Beams Reinforced With GFRP Rebars. IOP Conference Series: Earth and Environmental Science, 80, 012027. doi:10.1088/1755-1315/80/1/012027.
[21] Saraswathy, T., & Dhanalakshmi, K. (2014). Investigation of flexural behaviour of RCC beams using GFRP bars. International Journal of Scientific & Engineering Research, 5(1), 333-338.
[22] Moawad, M. S., & Fawzi, A. (2021). Performance of concrete beams partially/fully reinforced with glass fiber polymer bars. Journal of Engineering and Applied Science, 68(1), 1–18. doi:10.1186/s44147-021-00028-6.
[23] Rasheed, M. R., & Mohammed, S. D. (2024). Structural Behavior of Concrete One-Way Slab with Mixed Reinforcement of Steel and Glass Fiber Polymer Bars under Fire Exposure. Engineering, Technology and Applied Science Research, 14(2), 13380–13387. doi:10.48084/etasr.6795.
[24] Rasheed, M. R., & Mohammed, S. D. (2024). Structural behavior of one-way slabs reinforced by a combination of GFRP and steel bars: An experimental and numerical investigation. Journal of the Mechanical Behavior of Materials, 33(1), 20240002. doi:10.1515/jmbm-2024-0002.
[25] Liang, X., Peng, J., & Ren, R. (2023). A state-of-the-art review: Shear performance of the concrete beams reinforced with FRP bars. Construction and Building Materials, 364. doi:10.1016/j.conbuildmat.2022.129996.
[26] Swamy, R. N., & Al-Noori, K. A. (1975). Flexural behavior of fiber concrete with conventional steel reinforcement. Proceedings RILEM Symposium on Fiber Reinforced Cement and Concrete, 14-17 September, 1975, London, United Kingdom.
[27] Ahmed, W., & Lim, C. W. (2021). Production of sustainable and structural fiber reinforced recycled aggregate concrete with improved fracture properties: A review. Journal of Cleaner Production, 279. doi:10.1016/j.jclepro.2020.123832.
[28] Shen, W., Chen, S., & Zhang, J. (2022). Calculation of Cracks in Partially Steel Fiber Reinforced Concrete Beams with BFRP Bars. Advances in Materials Science and Engineering, 2022, 1–12,. doi:10.1155/2022/9158379.
[29] Tiberti, G., Germano, F., Mudadu, A., & Plizzari, G. A. (2018). An overview of the flexural post-cracking behavior of steel fiber reinforced concrete. Structural Concrete, 19(3), 695–718. doi:10.1002/suco.201700068.
[30] Ding, Y., Yu, K. Q., Yu, J. tao, & Xu, S. lang. (2018). Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bending-experimental study. Construction and Building Materials, 177, 102–115. doi:10.1016/j.conbuildmat.2018.05.122.
[31] He, F., Biolzi, L., Carvelli, V., & Monteiro, P. J. M. (2022). Digital imaging monitoring of fracture processes in hybrid steel fiber reinforced concrete. Composite Structures, 298, 116005. doi:10.1016/j.compstruct.2022.116005.
[32] Yoo, D. Y., Yoon, Y. S., & Banthia, N. (2015). Predicting the post-cracking behavior of normal- and high-strength steel-fiber-reinforced concrete beams. Construction and Building Materials, 93, 477–485. doi:10.1016/j.conbuildmat.2015.06.006.
[33] Qu, S., Zhang, Y., Zhu, Y., Huang, L., Qiu, M., & Shao, X. (2020). Prediction of tensile response of UHPC with aligned and ZnPh treated steel fibers based on a spatial stochastic process. Cement and Concrete Research, 136, 106165. doi:10.1016/j.cemconres.2020.106165.
[34] Lee, S. K., Oh, T., Banthia, N., & Yoo, D. Y. (2023). Optimization of fiber aspect ratio for 90 MPa strain-hardening geopolymer composites (SHGC) with a tensile strain capacity over 7.5%. Cement and Concrete Composites, 139, 105055. doi:10.1016/j.cemconcomp.2023.105055.
[35] Chun, B., Oh, T., Choi, H. J., Lee, S. K., Banthia, N., & Yoo, D. Y. (2023). Self-healing capacity of ultra-rapid-hardening fiber-reinforced cementitious composites under tension. Construction and Building Materials, 385, 131464. doi:10.1016/j.conbuildmat.2023.131464.
[36] Schupack, M. (1985). Durability of SFRC exposed to severe environments. Proceedings, Steel Fiber Concrete US-Sweden Joint Seminar (NSF-STU), 3-5 June, 1985, Stockholm, Sweden.
[37] Adnan Hadi, M., & Mohammed, S. D. (2021). Improving torsional - Flexural resistance of concrete beams reinforced by hooked and straight steel fibers. Materials Today: Proceedings, 42, 3072–3082. doi:10.1016/j.matpr.2020.12.1046.
[38] Ismael, T. M., & Mohammed, S. D. (2021). Structural performance of fiber-reinforced lightweight concrete slabs with expanded clay aggregate. Materials Today: Proceedings, 42, 2901–2908. doi:10.1016/j.matpr.2020.12.746.
[39] Abbas, R. M., & Rakaa, R. K. (2023). Structural Performance of Lightweight Fiber Reinforced Polystyrene Aggregate Self-Compacted Concrete Beams. Engineering, Technology & Applied Science Research, 13(5), 11865–11870. doi:10.48084/etasr.6217.
[40] Yoo, D. Y., Soleimani-Dashtaki, S., Oh, T., Chun, B., Choi, J. S., Banthia, N., & Yoon, Y. S. (2024). Effects of amount and geometrical properties of steel fiber on shear behavior of high-strength concrete beams without shear reinforcement. Cement and Concrete Composites, 151, 105606. doi:10.1016/j.cemconcomp.2024.105606.
[41] Joshi, S. S., Thammishetti, N., & Prakash, S. S. (2018). Efficiency of steel and macro-synthetic structural fibers on the flexure-shear behaviour of prestressed concrete beams. Engineering Structures, 171, 47–55. doi:10.1016/j.engstruct.2018.05.067.
[42] Meda, A., Minelli, F., & Plizzari, G. A. (2012). Flexural behaviour of RC beams in fibre reinforced concrete. Composites Part B: Engineering, 43(8), 2930–2937. doi:10.1016/j.compositesb.2012.06.003.
[43] Yoo, D. Y., Banthia, N., & Yoon, Y. S. (2016). Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 111, 246–262. doi:10.1016/j.engstruct.2015.12.003.
[44] Ferrier, E., Michel, L., Zuber, B., & Chanvillard, G. (2015). Mechanical behaviour of ultra-high-performance short-fibre-reinforced concrete beams with internal fibre reinforced polymer bars. Composites Part B: Engineering, 68, 246–258. doi:10.1016/j.compositesb.2014.08.001.
[45] Yang, J. M., Min, K. H., Shin, H. O., & Yoon, Y. S. (2012). Effect of steel and synthetic fibers on flexural behavior of high-strength concrete beams reinforced with FRP bars. Composites Part B: Engineering, 43(3), 1077–1086. doi:10.1016/j.compositesb.2012.01.044.
[46] Yoo, D. Y., Banthia, N., & Yoon, Y. S. (2016). Predicting service deflection of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP bars. Composites Part B: Engineering, 99, 381–397. doi:10.1016/j.compositesb.2016.06.013.
[47] Abdulmuttalib Issa, M., Allawi, A. A., & Oukaili, N. (2024). Performance of doubly reinforced concrete beams with GFRP bars. Journal of the Mechanical Behavior of Materials, 33(1), 1–14. doi:10.1515/jmbm-2022-0308.
[48] Issa, M. A., Allawi, A. A., & Oukaili, N. (2024). Effects of GFRP Stirrup Spacing on the Behavior of Doubly GFRP-Reinforced Concrete Beams. Civil Engineering Journal (Iran), 10(2), 502–520. doi:10.28991/CEJ-2024-010-02-011.
[49] Li, X., Zhang, W., Zhang, C., Liu, J., Li, L., & Wang, S. (2024). Flexural behavior of GFRP and steel bars reinforced lightweight ultra-high performance fiber-reinforced concrete beams with various reinforcement ratios. Structures, 70, 107897. doi:10.1016/j.istruc.2024.107897.
[50] Qu, W., Zhang, X., & Huang, H. (2009). Flexural Behavior of Concrete Beams Reinforced with Hybrid (GFRP and Steel) Bars. Journal of Composites for Construction, 13(5), 350–359. doi:10.1061/(asce)cc.1943-5614.0000035.
[51] Araba, A. M., & Ashour, A. F. (2018). Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams. Composites Part B: Engineering, 154, 321–336. doi:10.1016/j.compositesb.2018.08.077.
[52] Al-Osta, M. A., Isa, M. N., Baluch, M. H., & Rahman, M. K. (2017). Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete. Construction and Building Materials, 134, 279-296. doi:10.1016/j.conbuildmat.2016.12.094.
[53] Mazaheripour, H., Barros, J. A. O., Soltanzadeh, F., & Sena-Cruz, J. (2016). Deflection and cracking behavior of SFRSCC beams reinforced with hybrid prestressed GFRP and steel reinforcements. Engineering Structures, 125, 546–565. doi:10.1016/j.engstruct.2016.07.026.
[54] ASTM C150/C150M-21. (2022). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-21.
[55] ASTM C33/C33M-24a. (2024). Standard Specification for Concrete Aggregates. ASTM International, Pennsylvania, United States. doi:10.1520/C0033_C0033M-24A.
[56] ASTM C1240-20. (2020). Standard Specification for Silica Fume Used in Cementitious Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/C1240-20.
[57] ASTM C494/C494M-19. (2022). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-19.
[58] ASTM A615/A615M-05a. (2017). Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement. ASTM International, Pennsylvania, United States. doi:10.1520/A0615_A0615M-05A.
[59] EFNARC. (2005). European Guidelines for Self-Compacting Concrete, Specifications, Production and Use. EFNARC, Flums, Switzerland.
[60] ASTM C39/C39M-21. (2023). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0039_C0039M-21.
[61] ASTM C496/C496M-17. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, Pennsylvania, United States. doi:10.1520/C0496_C0496M-17.
[62] ASTM C469/C469M-22. (2022). Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression. ASTM International, Pennsylvania, United States. doi:10.1520/C0469_C0469M-22.
[63] Yoo, D. Y., Yoon, Y. S., & Banthia, N. (2015). Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate. Cement and Concrete Composites, 64, 84–92. doi:10.1016/j.cemconcomp.2015.10.001.
[64] Wegian, F. M., & Abdalla, H. A. (2005). Shear capacity of concrete beams reinforced with fiber reinforced polymers. Composite Structures, 71(1), 130–138. doi:10.1016/j.compstruct.2004.10.001.
[65] Said, M., Adam, M. A., Mahmoud, A. A., & Shanour, A. S. (2016). Experimental and analytical shear evaluation of concrete beams reinforced with glass fiber reinforced polymers bars. Construction and Building Materials, 102, 574–591. doi:10.1016/j.conbuildmat.2015.10.185.
[66] Wang, X., Wu, Q., & Chen, W. (2023). Experimental Study on the Impact Resistance of Steel Fiber Reinforced All-Lightweight Concrete Beams under Single and Hybrid Mixing Conditions. Buildings, 13(5). doi:10.3390/buildings13051251.
[67] ACI 318-19. (2019 Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute (ACI), Farmington Hills, United States.
[68] CAN/CSA-S6:19. (2019). Canadian Highway Bridge Design Code. Canadian Standards Association (CSA), Toronto, Canada.
[69] Wille, K., & Naaman, A. E. (2012). Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete. ACI Materials Journal, 109(4), 479–488. doi:10.14359/51683923.
[70] Yoo, D. Y., Sohn, H. K., Borges, P. H. R., Fediuk, R., & Kim, S. (2020). Enhancing the tensile performance of ultra-high-performance concrete through strategic use of novel half-hooked steel fibers. Journal of Materials Research and Technology, 9(3), 2914–2925. doi:10.1016/j.jmrt.2020.01.042.
[71] Islam, A., Alengaram, U. J., Jumaat, M. Z., Ghazali, N. B., Yusoff, S., & Bashar, I. I. (2017). Influence of steel fibers on the mechanical properties and impact resistance of lightweight geopolymer concrete. Construction and Building Materials, 152, 964–977. doi:10.1016/j.conbuildmat.2017.06.092.
[72] K. Kytinou, V., E. Chalioris, C., G. Karayannis, C., & Elenas, A. (2020). Effect of Steel Fibers on the Hysteretic Performance of Concrete Beams with Steel Reinforcement—Tests and Analysis. Materials, 13(13), 2923. doi:10.3390/ma13132923.
[73] Mufti, A. A., Newhook, J. P., & Tadros, G. (1996). Deformability versus ductility in concrete beams with FRP reinforcement. Proceedings of the 2nd International Conference on Advanced Composite Materials in Bridges and Structures, 11-14 August, 1996, Montréal, Canada.
[74] Jaeger, L. G., Mufti, A. A., & Tadros, G. (1997). The concept of the overall performance factor in rectangular-section reinforced concrete members. Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, 14-16 October, Sapporo, Japan.
[75] Wang, H., & Belarbi, A. (2011). Ductility characteristics of fiber-reinforced-concrete beams reinforced with FRP rebars. Construction and Building Materials, 25(5), 2391–2401. doi:10.1016/j.conbuildmat.2010.11.040.
[76] Wei, B., He, X., Zhou, M., Wang, H., & He, J. (2024). Experimental study on flexural behaviors of FRP and steel bars hybrid reinforced concrete beams. Case Studies in Construction Materials, 20, 2759. doi:10.1016/j.cscm.2023.e02759.
[77] Naaman, A., & Jeong, M. (1995). 45 Structural ductility of concrete beams prestressed with FRP tendons. Non-Metallic (FRP) Reinforcement for concrete structures: Proceedings of the second international RILEM, 23-25 August, 1995, Ghent, Belgium.
[78] Wang, H., Zhou, M., Wei, B., Wu, C., Tang, Z., Zhang, S., & He, J. (2025). Study on flexural cracking characteristics of polypropylene fiber reinforced concrete beams with BFRP bars. Case Studies in Construction Materials, 22, 4372. doi:10.1016/j.cscm.2025.e04372.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














