Modeling of Geomechanical Processes from Open Pit to Underground Mining with Complex Morphology
Downloads
The relevance of this study is the need to optimize the transition from open-pit to underground mining in mines with complex deposit morphologies, such as the Akzhal Mine. This is essential to ensure the safety of mining operations and to prevent adverse manifestations of rock pressure and mass cave-ins when changing the type of mining. This study aimed to develop a geomechanical basis for selecting an optimal mining system for the transition from open-pit to underground mining. Particular attention is paid to rock mass stability and its behavior during mining operations, which makes it possible to optimize the parameters of the mining system by considering the characteristics of a mine with a complex deposit morphology. This study used methods to assess the strength of the rock mass, including the concept of the geological structure of the natural environment, the methodology of determining the structural weakening coefficient, and the determination of the rock mass deformation modulus using the fracturing ratio and stability of the rock mass coefficient with an analytical functional relationship of geo-structural factors. The study results made it possible to systematize the rock mass by stability categories and proposed recommendations for the safe operation of deposits during the transition to underground mining, on the choice of mining system, and on the design of its elements. The novelty of this study lies in an integrated approach for predicting the behavior of rock mass and selecting the optimal mining system, which makes it possible to improve the safety and efficiency of production under difficult geological conditions.
Downloads
[1] Kozyrev, A. A., Batugin, A. S., & Zhukova, S. A. (2021). Influence of water content on seismic activity of rocks mass in apatite mining in Khibiny. Gornyi Zhurnal, 2021(1), 31–36. doi:10.17580/gzh.2021.01.06.
[2] Fedorov, E., Bekbergenov, D., & Jangulova, G. (2020). Modeling and methodology for calculating the strength of a man-made bottom in a system with self-destruction of ore for ecologically safe mining. E3S Web of Conferences, 192, 3018. doi:10.1051/e3sconf/202019203018.
[3] Yakovlev, V. L. (2022). Key Stages and Results of Research to Formulate Methodological Basis for the Strategy to Develop Mining Systems for Deep Seated Deposits of Solid Minerals. Gornaya Promyshlennost, 2022(1s), 34–45. doi:10.30686/1609-9192-2022-1S-34-45.
[4] Akishev, K. M., Aryngazin, K. S., Tleulessov, K., Bulyga, L. L., & Stanevich, V. T. (2024). The Use of Simulation Modeling in Calculating the Productivity of the Technological System for the Production of Building Products with Fillers from Man-Made Waste. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2024(4), 22–32. doi:10.32014/2024.2518-170X.422.
[5] Balt, K., & Goosen, R. L. (2020). MSAHP: An approach to mining method selection. Journal of the Southern African Institute of Mining and Metallurgy, 120(8), 451–460. doi:10.17159/2411-9717/1072/2020.
[6] Lyashenko, V., Khomenko, O., Chekushina, T., & Topolnij, F. (2020). Justification of safe underground development of mountain deposits of complex structure by geophysical methods. Technology Audit and Production Reserves, 5(3(55)), 9–18. doi:10.15587/2706-5448.2020.215737.
[7] Rybak, J., Khayrutdinov, M. M., Kuziev, D. A., Kongar-Syuryun, C. B., & Babyr, N. V. (2022). Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. Journal of Mining Institute, 253(1), 61–70. doi:10.31897/PMI.2022.2.
[8] Isabek, T., Orynbek, Y., Kozhogulov, K., Sarkulova, Z., Abdiyeva, L., & Yefremova, S. (2022). Geomechanical substantiation of the parameters for the mining system with ore shrinkage in the combined mining of steep-dipping ore bodies. Mining of Mineral Deposits, 16(4), 115–121. doi:10.33271/mining16.04.115.
[9] Suimbayeva, A. (2020). Geotechnological Research to Justify the Parameters of Stability of the Rock Mass During Combined Mining (on the Example of the Akzhal Field). Ph.D. Thesis, Karaganda State Technical University, Karaganda, Kazakhstan.
[10] Rysbekov, K., Bitimbayev, M., Akhmetkanov, D., Barmenshinova, M., Toktarov, A., Baskanbayeva, D., & Yelemessov, K. (2022). Substantiation of mining systems for steeply dipping low-thickness ore bodies with controlled continuous stope extraction. Mining of Mineral Deposits, 16(2), 64–72. doi:10.33271/mining16.02.064.
[11] Yussupov, K., Aben, E., Akhmetkanov, D., Aben, K., & Yussupova, S. (2023). Investigation of the solid oxidizer effect on the metal geotechnology efficiency. Mining of Mineral Deposits, 17(4), 12–17. doi:10.33271/mining17.04.012.
[12] Mussin, A., Kydrashov, A., Asanova, Z., Abdrakhman, Y., & Ivadilinova, D. (2024). Ore dilution control when mining low-thickness ore bodies using a system of sublevel drifts. Mining of Mineral Deposits, 18(2), 18–27. doi:10.33271/mining18.02.018.
[13] Xing, Y., Kulatilake, P. H. S. W., & Sandbak, L. A. (2018). Investigation of rock mass stability around the tunnels in an underground mine in USA using three-dimensional numerical modeling. Rock Mechanics and Rock Engineering, 51(2), 579-597. doi:10.1007/s00603-017-1336-6.
[14] Kashan, A. J., Lay, J., Wiewiora, A., & Bradley, L. (2022). The innovation process in mining: Integrating insights from innovation and change management. Resources Policy, 76, 102575. doi:10.1016/j.resourpol.2022.102575.
[15] Dintwe, T. K. M., Sasaoka, T., Shimada, H., Hamanaka, A., Moses, D. N., Peng, M., Fanfei, M., Liu, S., Ssebadduka, R., & Onyango, J. A. (2022). Numerical Simulation of Crown Pillar Behaviour in Transition from Open Pit to Underground Mining. Geotechnical and Geological Engineering, 40(4), 2213–2229. doi:10.1007/s10706-021-02022-4.
[16] Mazraehli, M., & Zare, S. (2020). An application of uncertainty analysis to rock mass properties characterization at porphyry copper mines. Bulletin of Engineering Geology and the Environment, 79(7), 3721–3739. doi:10.1007/s10064-020-01758-2.
[17] Han, L., Wang, L., & Zhang, W. (2020). Quantification of statistical uncertainties of rock strength parameters using Bayesian-based Markov Chain Monte Carlo method. IOP Conference Series: Earth and Environmental Science, 570(3), 32051. doi:10.1088/1755-1315/570/3/032051.
[18] Protosenya, A. G., Belyakov, N. A., & Bouslova, M. A. (2023). Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of Mining Institute, 262, 619–627.
[19] Bennouna, R., Ouadif, L., Akhssas, A., Senhaji, A. S., & Boulaid, G. (2024). Wedge stability analysis in fractured soft rock slopes for different orientations of seismic components. Mining of Mineral Deposits, 18(1), 1–8. doi:10.33271/mining18.01.001.
[20] Vu, T. T., & Do, S. A. (2023). Determination of the rock mass displacement zone by numerical modeling method when exploiting the longwall at the Nui Beo Coal Mine, Vietnam. Mining of Mineral Deposits, 17(1), 59–66. doi:10.33271/mining17.01.059.
[21] Stemn, E., & Krampah, F. (2022). Injury severity and influence factors in surface mines: A correspondence analysis. Safety Science, 145, 105495. doi:10.1016/j.ssci.2021.105495.
[22] Joe-Asare, T., Stemn, E., & Amegbey, N. (2023). Causal and contributing factors of accidents in the Ghanaian mining industry. Safety Science, 159, 106036. doi:10.1016/j.ssci.2022.106036.
[23] Diulin, D. A., Prushak, V. Y., & Gegedesh, M. G. (2023). Analysis of the stress-strain state of problematic sections of the shaft of the mine using computer simulation. Doklady of the National Academy of Sciences of Belarus, 67(4), 322–330. doi:10.29235/1561-8323-2023-67-4-322-330.
[24] Susilo, A., Zulaikah, S., Pohan, A. F., Fathur Rouf Hasan, M., Hisyam, F., Rohmah, S., & Adhi, M. A. (2024). Vulnerability Index Assessment for Mapping Ground Movements Using the Microtremor Method as Geological Hazard Mitigation. Civil Engineering Journal (Iran), 10(5), 1616–1626. doi:10.28991/CEJ-2024-010-05-017.
[25] Elbshbeshi, A., Gomaa, A., Mohamed, A., Othman, A., & Ghazala, H. (2022). Seismic hazard evaluation by employing microtremor measurements for Abu Simbel area, Aswan, Egypt. Journal of African Earth Sciences, 196, 104734. doi:10.1016/j.jafrearsci.2022.104734.
[26] Ma, C., Lafrance, B., & Montreuil, J. F. (2025). Polyphase formation of a Neoarchean auriferous fault zone network in the Michipicoten greenstone belt, southern Superior craton. Canadian Journal of Earth Sciences, 62(2), 171–191. doi:10.1139/cjes-2023-0120.
[27] Jellicoe, K., Ciufo, T. J., Lin, S., Wodicka, N., Wu, N., Mercier-Langevin, P., & Yakymchuk, C. (2022). Genesis of the Island Gold Deposit, Ontario, Canada: Implications for Gold Mineralization in the Wawa Subprovince of the Superior Province. Economic Geology, 117(7), 1597–1612. doi:10.5382/econgeo.4963.
[28] Zhienbayev, A., Zharaspaev, M., Balpanova, M., Nurkasyn, R., Asanova, Z., & Zhakupov, B. (2023). Analysis of the roof span stability in terms of room-and-pillar system of ore deposit mining. Mining of Mineral Deposits, 17(1), 129–137. doi:10.33271/mining17.01.129.
[29] Kaiser, P. K., & Cai, M. (2012). Design of rock support system under rockburst condition. Journal of Rock Mechanics and Geotechnical Engineering, 4(3), 215-227. doi:10.3724/SP.J.1235.2012.00215.
[30] Begalinov, A., Almenov, T., Zhanakova, R., & Bektur, B. (2020). Analysis of the stress deformed state of rocks around the haulage roadway of the beskempir field (Kazakhstan). Mining of Mineral Deposits, 14(3), 28–36. doi:10.33271/mining14.03.028.
[31] Begalinov, A., Shautenov, M., Almenov, T., Bektur, B., & Sakhipova, K. (2024). Research of Gravity Concentration of the Gold Placer of Eastern Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2024(3), 17–34. doi:10.32014/2024.2518-170X.407.
[32] Begalinov, A., Peregudov, V., Tretyakov, A., Almenov, T., Bektur, B., Sakhipova, K., & Shautenov, M. (2023). Polygenic gold mineralization in quartz-pebble formations on the Takyr-Kaljir site of the Southern Altai, East Kazakhstan Region. Mining of Mineral Deposits, 17(3), 32–41. doi:10.33271/mining17.03.032.
[33] Akhmetov, N. B. (2020). Satpayev Readings. Kazakh National Technical University named after K.I. Satpaev, Almaty, Kazakhstan. Available online: https://official.satbayev.university/download/document/15654/Сатпаевские%20Чтения%202020%20-%202%20том.pdf (accessed on July 2025) (In Kazakh).
[34] Begalinov, A., Shautenov, M., Almenov, T., & Bektur, B. (2022). Leaching process intensification of gold-bearing raw materials. Mining of Mineral Deposits, 16(2), 42–48. doi:10.33271/mining16.02.042.
[35] Sazanbayeva, A., Jangulova, G., & Levin, E. (2024). Theoretical Substantiation and Technology of Geodetic Support of Chromite Deposits on the Case of Kazakhstan: Literature Review. Acta Montanistica Slovaca, 29(3), 525–534. doi:10.46544/AMS.v29i3.01.
[36] Sdvyzhkova, O., Kuldeyev, E., Moldabayev, S., Sultanbekova, Z., Bascetin, A., Amankulov, M., Babets, D., & Issakov, B. (2022). Probabilistic assessment of slope stability at ore mining with steep layers in deep open pits. Mining of Mineral Deposits, 16(4), 11–18. doi:10.33271/mining16.04.011.
[37] Han, S., Zhuang, X., Yao, Q., Zhou, Q., & Hu, X. (2023). Understanding the Role of Rock Heterogeneity in Controlling Fault Strength and Stability. doi:10.48550/arxiv.2311.16879.
[38] Imashev, A., Suimbayeva, A., Zhunusbekova, G., Adoko, A. C., & Issakov, B. (2024). Assessing stability of mine workings driven in stratified rock mass. Mining of Mineral Deposits, 18(1), 82–88. doi:10.33271/mining18.01.082.
[39] Sdvyzhkova, O., Moldabayev, S., Babets, D., Bascetin, A., Asylkhanova, G., Nurmanova, A., & Prykhodko, V. (2024). Numerical modelling of the pit wall stability while optimizing its boundaries to ensure the ore mining completeness. Mining of Mineral Deposits, 18(2), 1–10. doi:10.33271/mining18.02.001.
[40] Tolovkhan, B., Smagulova, A., Khuangan, N., Asainov, S., Issagulov, S., Kaumetova, D., Khussan, B., & Sandibekov, M. (2023). Studying rock mass jointing to provide bench stability while Northern Katpar deposit developing in Kazakhstan. Mining of Mineral Deposits, 17(2), 99–111. doi:10.33271/mining17.02.099.
[41] Orlóci-Goodison, R. A., Lafrance, B., Beaudoin, G., & Côté-Mantha, O. (2024). The structural setting and evolution of the Upper Beaver gold–copper deposit, Ontario, Canada. Canadian Journal of Earth Sciences, 62(2), 401–425. doi:10.1139/cjes-2024-0027.
[42] Dehghan, A. N., & Khodaei, M. (2022). Stability analysis and optimal design of ultimate slope of an open pit mine: a case study. Geotechnical and Geological Engineering, 40(4), 1789-1808. doi:10.1007/s10706-021-01993-8.
[43] Seredkin, M., Zabolotsky, A., & Jeffress, G. (2016). In situ recovery, an alternative to conventional methods of mining: Exploration, resource estimation, environmental issues, project evaluation and economics. Ore Geology Reviews, 79, 500-514. doi:10.1016/j.oregeorev.2016.06.016.
[44] Neverov, A. A., Konurin, A. I., Neverov, S. A., Vasichev, S. Y., & Shchukin, S. A. (2024). Geomechanical Justification of Ground Control Method Using Pillars and Roof Caving in Mining Inclined Thin and Medium-Thick Orebodies. Journal of Mining Science, 60(5), 808–818. doi:10.1134/S1062739124050107.
[45] Genbach, A. A., Bondartsev, D. Y., & Beloev, H. I. (2021). Studies of integrated natural capillary-porous coatings. IOP Conference Series: Materials Science and Engineering, 1032(1), 12038. doi:10.1088/1757-899X/1032/1/012038.
[46] Demina, T., Zhumabekova, A., Medeubayev, N., Meiram, D., Sherubayev, S., Abdrasheva, Z., & Gabitova, A. (2024). Simulation of the enclosing rock displacements around the development mine workings. Mining of Mineral Deposits, 18(4), 153–161. doi:10.33271/mining18.04.153.
[47] Bekbergenov, D. K., Jangulova, G. K., Nasyrov, R. S., Aiymbetov, M. M., Bektur, B. K., & Abakanov, A. T. (2022). Applicability of manmade bottoms in extraction panels toward sustainable stoping with caving at deep levels in mines. IOP Conference Series: Earth and Environmental Science, 991(1), 12047. doi:10.1088/1755-1315/991/1/012047.
[48] Genbatch, A. A., & Bondartsev, D. Y. (2018). Experimental method of investigation of the heat transfer crisis in a capillary-porous cooling system. News of the National Academy of Sciences of the Republic of Kazakhstan-Series of Geology and Technical Sciences, (2), 81-88.
[49] Guo, Y., Luo, L., Ma, R., Li, S., Zhang, W., & Wang, C. (2023). Study on Surface Deformation and Movement Caused by Deep Continuous Mining of Steeply Inclined Ore Bodies. Sustainability (Switzerland), 15(15), 11815. doi:10.3390/su151511815.
[50] Shaojie, F., Chen, G., & Wenbo, L. (2021). Study on failure law of rock mass and slope stability by open-pit combined mining. E3S Web of Conferences, 248, 3013. doi:10.1051/e3sconf/202124803013.
[51] Xie, Z. H., Xie, R. Y., & Lu, X. Y. (2015). Stability Analysis on High and Steep Slope of Open-Pit Based on Limit Equilibrium Method. Applied Mechanics and Materials, 777, 106–111. doi:10.4028/www.scientific.net/amm.777.106.
[52] Shi, S., Guo, Z., Ding, P., Tao, Y., Mao, H., & Jiao, Z. (2022). Failure Mechanism and Stability Control Technology of Slope during Open-Pit Combing Underground Extraction: A Case Study from Shanxi Province of China. Sustainability (Switzerland), 14(14), 8939. doi:10.3390/su14148939.
[53] Baloyi, V. D., & Meyer, L. D. (2020). The development of a mining method selection model through a detailed assessment of multi-criteria decision methods. Results in Engineering, 8, 100172. doi:10.1016/j.rineng.2020.100172.
[54] Konyukhov, D. S. (2022). Analysis of mechanized tunneling parameters to determine the overcutting characteristics. Mining Science and Technology (Russian Federation), 7(1), 49–56. doi:10.17073/2500-0632-2022-1-49-56.
[55] Nemova, N. A., & Belsh, T. A. (2019). Geomechanical estimation of stability parameters of pit slope scale and batters when developing the apatitebnepheline ore deposit «Oleniy Ruchey». Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 330(11), 109–120. doi:10.18799/24131830/2019/11/2355.
[56] Pospehov, G. B., Norova, L. P., & Izotova, V. A. (2024). Comparing the methods of grain size analysis of gypsum-containing sulfuric acid wastes neutralized with limestone. Sustainable Development of Mountain Territories, 16(4), 1729–1742. doi:10.21177/1998-4502-2024-16-4-1729-1742.
[57] Driouch, A., Ouadif, L., Lahmili, A., & Belmi, M. A. (2022). Evaluation of the Compression Potential of Serpentine Rock Masses of the Bou Azzer Mining District in the Central Anti-Atlas of Morocco. Mining, Metallurgy & Exploration, 39(1), 189–200. doi:10.1007/s42461-021-00517-5.
[58] Badakhshan, N., Shahriar, K., Afraei, S., & Bakhtavar, E. (2023). Evaluating the impacts of the transition from open-pit to underground mining on sustainable development indexes. Journal of Sustainable Mining, 22(2), 155–168. doi:10.46873/2300-3960.1382.
[59] MacNeil, J., Dimitrakopoulos, R., & Peattie, R. (2022). A stochastic mine planning approach to determine the optimal open pit to underground mining transition depth–case study at the Geita gold mine, Tanzania. Mining Technology: Transactions of the Institute of Mining and Metallurgy, 131(3), 181–190. doi:10.1080/25726668.2022.2072559.
[60] Siad, L. (2003). Seismic stability analysis of fractured rock slopes by yield design theory. Soil Dynamics and Earthquake Engineering, 23(3), 21–30. doi:10.1016/S0267-7261(02)00213-0.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.