Effect of Air Pressure on Changes in Parameters and Soil Settlement Behavior in Very Soft Soils
Downloads
An effective soil improvement method is essential in soft soil due to the poor bearing capacity for construction loads. To address the challenge, the use of the staged air pressure method with Suction Assisted Vacuum Preloading (SAVP) has shown significant potential when applied through Geosystem Air Booster Vacuum Preloading (GAVP), specifically designed with a sensor system as a real-time measuring tool for soil parameter changes. Therefore, this research aims to examine the effectiveness of the SAVP method in relation to the discharge of drained water from prefabricated vertical drains (PVD) on changes in soil parameters due to air pressure and vacuum using the GAVP tool. The method used five PVDs in large-diameter soil sample tubes, applying air pressure and vacuum simultaneously and selectively. This experimental setup was designed to examine the fundamental aspects of soil parameter changes, namely permeability, consolidation, and volume compression coefficient. The results showed that soil parameters during testing interacted with each other, where air pressure balanced with vacuum caused changes and optimized settlement and consolidation efficiency. Decreasing air pressure enhanced vacuum performance, causing a corresponding rise in soil settlement and consolidation degree. However, increasing air pressure decreased soil settlement and the degree of consolidation.
Downloads
[1] Kjellman, W. (1952). Consolidation of clay soil by means of atmospheric pressure. Proceedings of a Conference on Soil Stabilization, Massachusetts Institute of Technology, Massachusetts, United States.
[2] Suhendra, A., & Irsyam, M. (2011). Study of Vacuum Preloading Application as an Alternative Method to Accelerate the Consolidation Process on Water-saturated Soft Clay Soil: GVS Trial at Pantai Indah Kapuk Housing Complex, Jakarta. ComTech: Computer, Mathematics and Engineering Applications, 2(2), 1055. doi:10.21512/comtech.v2i2.2855.
[3] Li, L. H., Wang, Q., Wang, N. X., & Wang, J. P. (2009). Vacuum dewatering and horizontal drainage blankets: A method for layered soil reclamation. Bulletin of Engineering Geology and the Environment, 68(2), 277–285. doi:10.1007/s10064-009-0200-7.
[4] Lai, J., Li, P., Liu, W., & Tang, J. (2018). Visual Measurement Device and Experiment of Ground Water Level in Vacuum Preloading. Proceedings of GeoShanghai 2018 International Conference: Multi-Physics Processes in Soil Mechanics and Advances in Geotechnical Testing, 373–380. doi:10.1007/978-981-13-0095-0_42.
[5] Chu, J., Yan, S. W., & Yang, H. (2000). Soil improvement by the vacuum preloading method for an oil storage station. Geotechnique, 50(6), 625–632. doi:10.1680/geot.2000.50.6.625.
[6] Seah, T. H. (2006). Design and construction of ground improvement works at Suvarnabhumi Airport. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 37, 171–188.
[7] Chu, J., Bo, M. W., & Choa, V. (2006). Improvement of ultra-soft soil using prefabricated vertical drains. Geotextiles and Geomembranes, 24(6), 339–348. doi:10.1016/j.geotexmem.2006.04.004.
[8] Mesri, G., & Khan, A. Q. (2011). Increase in shear strength due to vacuum preloading. 2011 Pan-Am CGS Geotechnical Conference, 2-6 October, 2011, Toronto, Canada.
[9] Mesri, G., & Khan, A. Q. (2012). Ground Improvement Using Vacuum Loading Together with Vertical Drains. Journal of Geotechnical and Geoenvironmental Engineering, 138(6), 680–689. doi:10.1061/(asce)gt.1943-5606.0000640.
[10] Long, P. V., Nguyen, L. V., Bergado, D. T., & Balasubramaniam, A. S. (2015). Performance of PVD improved soft ground using vacuum consolidation methods with and without airtight membrane. Geotextiles and Geomembranes, 43(6), 473–483. doi:10.1016/j.geotexmem.2015.05.007.
[11] Sun, L., Guo, W., Chu, J., Nie, W., Ren, Y., Yan, S., & Hou, J. (2017). A pilot test on a membraneless vacuum preloading method. Geotextiles and Geomembranes, 45(3), 142–148. doi:10.1016/j.geotexmem.2017.01.005.
[12] Cai, Y., Xie, Z., Wang, J., Wang, P., & Geng, X. (2018). New approach of vacuum preloading with booster prefabricated vertical drains (PVDs) to improve deep marine clay strata. Canadian Geotechnical Journal, 55(10), 1359-1371. doi:10.1139/cgj-2017-0412.
[13] Wang, P., Han, Y., Wang, J., Cai, Y., & Geng, X. (2019). Deformation characteristics of soil between prefabricated vertical drains under vacuum preloading. Geotextiles and Geomembranes, 47(6), 798–802. doi:10.1016/j.geotexmem.2019.103493.
[14] Kianfar, K., Indraratna, B., Rujikiatkamjorn, C., & Leroueil, S. (2015). Radial consolidation response upon the application and removal of vacuum and fill loading. Canadian Geotechnical Journal, 52(12), 2156–2162. doi:10.1139/cgj-2014-0511.
[15] Wang, J., Ma, J., Liu, F., Mi, W., Cai, Y., Fu, H., & Wang, P. (2016). Experimental study on the improvement of marine clay slurry by electroosmosis-vacuum preloading. Geotextiles and Geomembranes, 44(4), 615–622. doi:10.1016/j.geotexmem.2016.03.004.
[16] Xie, Z., Wang, J., Fu, H., Cai, Y., Xiuqing, H., Cai, Y., Zhang, Y., Ma, X., & Jin, H. (2019). Effect of pressurization positions on the consolidation of dredged slurry in air-booster vacuum preloading method. Marine Georesources & Geotechnology, 38(1), 122–131. doi:10.1080/1064119x.2018.1563252.
[17] Ke, S., Wang, P., Hu, X., Geng, X., Hai, J., Jin, J., Jiang, Z., Ye, Q., & Chen, Z. (2019). Effect of the pressurized duration on improving dredged slurry with air booster vacuum preloading. Marine Georesources & Geotechnology, 38(8), 970–979. doi:10.1080/1064119x.2019.1645250.
[18] Lei, H., Hu, Y., Zheng, G., Liu, J., Wang, L., & Liu, Y. (2019). Improved air-booster vacuum preloading method for newly dredged fills: Laboratory model study. Marine Georesources & Geotechnology, 38(4), 493–510. doi:10.1080/1064119x.2019.1599088.
[19] Anda, R., Fu, H., Wang, J., Lei, H., Hu, X., Ye, Q., Cai, Y., & Xie, Z. (2020). Effects of pressurizing timing on air booster vacuum consolidation of dredged slurry. Geotextiles and Geomembranes, 48(4), 491–503. doi:10.1016/j.geotexmem.2020.02.007.
[20] Shen, Y., Liu, Y., Geng, S., Qi, Y., Dong, S., Xin, X., Sun, J., & Zheng, H. (2021). Consolidation theory of homogeneous multilayer treatment by air-boosted vacuum preloading. European Journal of Environmental and Civil Engineering, 26(12), 5634–5652. doi:10.1080/19648189.2021.1915389.
[21] Feng, S., Lei, H., & Lin, C. (2022). Analysis of ground deformation development and settlement prediction by air-boosted vacuum preloading. Journal of Rock Mechanics and Geotechnical Engineering, 14(1), 272–288. doi:10.1016/j.jrmge.2021.05.006.
[22] Yao, K., Cheng, D., Sheng, J., Shi, L., Hu, L., & Yu, Y. (2023). Real-Time Behaviour of Dredged Slurry Treated by Air-Booster Vacuum Consolidation. Applied Sciences (Switzerland), 13(6), 3550. doi:10.3390/app13063550.
[23] Huangfu, Z., & Deng, A. (2024). Large strain consolidation model of vacuum and air-booster combined dewatering. Computers and Geotechnics, 171. doi:10.1016/j.compgeo.2024.106317.
[24] Gao, W., Han, L., Zhao, Y., Sun, J., & Liu, L. (2025). Consolidation analysis of soft ground with air-boosted vacuum preloading considering attenuation of vacuum and boost pressure. Scientific Reports, 15(1), 23161. doi:10.1038/s41598-025-04243-6.
[25] Sun, Y., Wang, F., Tang, Y., Yang, L., Chen, S., Du, Q., Huang, M., & Zhai, Q. (2025). Study on the effect and mechanism of hot-air-boosted vacuum preloading solidification of dredged silt via model tests. Applied Ocean Research, 161, 104684. doi:10.1016/j.apor.2025.104684.
[26] Zhang, H., Guo, L., & Tu, C. (2025). Experimental Investigation on the Improvement of Dredged Sludge Using Air–Booster Vacuum Preloading with Polyacrylamide Addition. Materials, 18(9), 2065. doi:10.3390/ma18092065.
[27] López-Acosta, N. P., Espinosa-Santiago, A. L., Pineda-Núñez, V. M., Ossa, A., Mendoza, M. J., Ovando-Shelley, E., & Botero, E. (2019). Performance of a test embankment on very soft clayey soil improved with drain-to-drain vacuum preloading technology. Geotextiles and Geomembranes, 47(5), 618–631. doi:10.1016/j.geotexmem.2019.103459.
[28] Zhu, D., Indraratna, B., Poulos, H., & Rujikiatkamjorn, C. (2020). Field study of pile–prefabricated vertical drain (PVD) interaction in soft clay. Canadian Geotechnical Journal, 57(3), 377-390.
[29] Sun, L., Gao, X., Zhuang, D., Guo, W., Hou, J., & Liu, X. (2018). Pilot tests on vacuum preloading method combined with short and long PVDs. Geotextiles and Geomembranes, 46(2), 243–250. doi:10.1016/j.geotexmem.2017.11.010.
[30] Chu, J., & Yan, S. W. (2005). Estimation of Degree of Consolidation for Vacuum Preloading Projects. International Journal of Geomechanics, 5(2), 158–165. doi:10.1061/(asce)1532-3641(2005)5:2(158).
[31] Chai, J. C., Carter, J. P., & Hayashi, S. (2005). Ground Deformation Induced by Vacuum Consolidation. Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1552–1561. doi:10.1061/(asce)1090-0241(2005)131:12(1552).
[32] Cai, Y., Qiao, H., Wang, J., Geng, X., Wang, P., & Cai, Y. (2017). Experimental tests on effect of deformed prefabricated vertical drains in dredged soil on consolidation via vacuum preloading. Engineering Geology, 222, 10–19. doi:10.1016/j.enggeo.2017.03.020.
[33] Indraratna, B., Rujikiatkamjorn, C., Baral, P., & Ameratunga, J. (2018). Performance of marine clay stabilised with vacuum pressure: Based on Queensland experience. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 598–611. doi:10.1016/j.jrmge.2018.11.002.
[34] Liu, J., Lei, H., Zheng, G., Zhou, H., & Zhang, X. (2017). Laboratory model study of newly deposited dredger fills using improved multiple-vacuum preloading technique. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 924–935. doi:10.1016/j.jrmge.2017.03.003.
[35] Yuan, X., Wang, Q., Lu, W., Zhang, W., Chen, H., & Zhang, Y. (2017). Indoor simulation test of step vacuum preloading for high-clay content dredger fill. Marine Georesources & Geotechnology, 36(1), 83–90. doi:10.1080/1064119x.2017.1285381.
[36] Fang, Y., Guo, L., & Huang, J. (2018). Mechanism test on inhomogeneity of dredged fill during vacuum preloading consolidation. Marine Georesources & Geotechnology, 37(8), 1007–1017. doi:10.1080/1064119x.2018.1522398.
[37] Li, J., Chen, H., Yuan, X., & Shan, W. (2020). Analysis of the effectiveness of the step vacuum preloading method: A case study on high clay content dredger fill in Tianjin, China. Journal of Marine Science and Engineering, 8(1), 38. doi:10.3390/JMSE8010038.
[38] Sakleshpur, V. A., Prezzi, M., & Salgado, R. (2018). Ground engineering using prefabricated vertical drains: A review. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 49(1), 45-64.
[39] Aspara, W. A. N., & Fitriani, E. N. (2016). Effect of Distance and Pattern of Prefabricated Vertical Drain for Improvement of Soft Clay Soil. Majalah Ilmiah Pengkajian Industri, 10(1), 41-50. (In Indonesian).
[40] Panjaitan, S. R. N. (2020). Preloading Analysis with Prefabricated Vertical Drain (PVD) for Soft Soil Improvement in the Tebing Tinggi - Indrapura Toll Road Construction. Journal of Civil Engineering Building and Transportation, 4(2), 85-93. doi:10.31289/jcebt.v4i2.4161. (In Indonesian).
[41] Ngo, D. H., Horpibulsuk, S., Suddeepong, A., Hoy, M., Udomchai, A., Doncommul, P., Rachan, R., & Arulrajah, A. (2020). Consolidation behavior of dredged ultra-soft soil improved with prefabricated vertical drain at the Mae Moh mine, Thailand. Geotextiles and Geomembranes, 48(4), 561–571. doi:10.1016/j.geotexmem.2020.03.002.
[42] Berry Peter, L. (1987). An introduction TO Soil Mechanic. Mc Graw Hill Book Company, Columbus, United States.
[43] Sutarman, E. (2013). Concepts and Applications of Soil Mechanics. Penerbit Andi, Jogjakarta, Indonesia. (In Indonesian).
[44] Barron, R. A. (1948). Consolidation of Fine-Grained Soils by Drain Wells by Drain Wells. Transactions of the American Society of Civil Engineers, 113(1), 718–742. doi:10.1061/taceat.0006098.
[45] Sun, H., Wang, J., Wang, D., Yu, Y., & Wei, Z. (2020). Optimal design of plastic drainage boards for soft soil foundations considering uncertainties in soil parameters. Journal of Zhejiang University - Science A, 21(1), 15–28. doi:10.1631/jzus.a1900227. (In Chinese).
[46] Nghia, N. T., Lam, L. G., & Shukla, S. K. (2018). A New Approach to Solution for Partially Penetrated Prefabricated Vertical Drains. International Journal of Geosynthetics and Ground Engineering, 4(2), 11. doi:10.1007/s40891-018-0128-8.
[47] Nguyen, B. P., Yun, D. H., & Kim, Y. T. (2018). An equivalent plane strain model of PVD-improved soft deposit. Computers and Geotechnics, 103, 32–42. doi:10.1016/j.compgeo.2018.07.004.
[48] Qi, C., Li, R., Gan, F., Zhang, W., & Han, H. (2020). Measurement and Simulation on Consolidation Behaviour of Soft Foundation Improved with Prefabricated Vertical Drains. International Journal of Geosynthetics and Ground Engineering, 6(2), 23. doi:10.1007/s40891-020-00208-z.
[49] Wang, P., Han, Y., Zhou, Y., Wang, J., Cai, Y., Xu, F., & Pu, H. (2020). Apparent clogging effect in vacuum-induced consolidation of dredged soil with prefabricated vertical drains. Geotextiles and Geomembranes, 48(4), 524–531. doi:10.1016/j.geotexmem.2020.02.010.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















