Impact of Water Quality and Sediments on the Riparian Vegetation of Andean Lake
Downloads
This study evaluates the quality of water and sediments in a high-altitude Andean lake designated as a RAMSAR wetland of international ecological importance called Guamuéz Lake (Laguna de la Cocha). The analysis focuses on their effects on riparian vegetation, particularly on Schoenoplectus californicus (Bulrush), a keystone species in the lacustrine ecosystem. Water and sediment samples were collected from areas under varying levels of anthropogenic pressure, including zones with and without visible degradation. Results indicate that agricultural runoff, aquaculture, and domestic wastewater discharges are major drivers of spatial and seasonal variability in water quality. Elevated biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) were observed during the rainy season, suggesting increased organic matter input. Sediment analyses showed that impacted areas had higher concentrations of metals such as iron and manganese and significantly elevated microbial loads. Microbiological analysis of sediments revealed a 440% increase in total microbial colonies at impacted sites compared to unaffected ones, with fecal coliforms (FC) and total coliforms (TC) increasing by 191% and 513%, respectively. This suggests that wastewater contamination promotes anaerobic conditions detrimental to S. californicus root systems, possibly contributing to vegetation dieback. The findings underscore the importance of including sediment quality assessments in aquatic ecosystem monitoring, as key indicators of riparian vegetation decline may not be evident through water analysis alone. These results call for integrated and sustainable watershed management practices to mitigate human impact and preserve the ecological integrity of this internationally recognized wetland system.
Downloads
[1] Gunkel, G. (2003). Limnology of a Tropical High Mountain Lake in Ecuador: Sediment characteristics and sedimentation rate. Revista de Biología Tropical, 51(2), 381-390. (In Spanish).
[2] Tapia Zurita, L. (2018). Analysis of the water quality of the Mantagua Wetland, Valparaíso Region, and its relationship with the social environment. Master Thesis, Universidad de Chile, Santiago, Chile. (In Spanish).
[3] Heino, J., Alahuhta, J., Bini, L. M., Cai, Y., Heiskanen, A. S., Hellsten, S., Kortelainen, P., Kotamäki, N., Tolonen, K. T., Vihervaara, P., Vilmi, A., & Angeler, D. G. (2021). Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biological Reviews, 96(1), 89–106. doi:10.1111/brv.12647.
[4] Sun, X., Armstrong, M., Moradi, A., Bhattacharya, R., Antão-Geraldes, A. M., Munthali, E., Grossart, H. P., Matsuzaki, S. ichiro S., Kangur, K., Dunalska, J. A., Stockwell, J. D., & Borre, L. (2025). Impacts of climate-induced drought on lake and reservoir biodiversity and ecosystem services: A review. Ambio, 54(3), 488–504. doi:10.1007/s13280-024-02092-7.
[5] Nair, A. A., Ragunath, K. P., Pazhanivelan, S., Muthumanickam, D., & Prabu, P. C. (2024). Exploring issues and solution in biodiversity management at Ramsar sites. Plant Science Today, 11. doi:10.14719/pst.4938.
[6] McDonald, A., & Gillespie, J. (2024). Beyond the selective regulation of wetlands: towards a rights of wetlands. Australian Geographer, 55(3), 329–344. doi:10.1080/00049182.2024.2364496.
[7] Ebner, M., Schirpke, U., & Tappeiner, U. (2022). How do anthropogenic pressures affect the provision of ecosystem services of small mountain lakes? Anthropocene, 38. doi:10.1016/j.ancene.2022.100336.
[8] Häder, D. P., Banaszak, A. T., Villafañe, V. E., Narvarte, M. A., González, R. A., & Helbling, E. W. (2020). Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Science of the Total Environment, 713. doi:10.1016/j.scitotenv.2020.136586.
[9] Gregersen, R., Howarth, J. D., Wood, S. A., Vandergoes, M. J., Puddick, J., Moy, C., Li, X., Pearman, J. K., Moody, A., & Simon, K. S. (2022). Resolving 500 Years of Anthropogenic Impacts in a Mesotrophic Lake: Nutrients Outweigh Other Drivers of Lake Change. Environmental Science and Technology, 56(23), 16940–16951. doi:10.1021/acs.est.2c06835.
[10] Hessen, D. O., Andersen, T., Armstrong McKay, D., Kosten, S., Meerhoff, M., Pickard, A., & Spears, B. M. (2024). Lake ecosystem tipping points and climate feedbacks. Earth System Dynamics, 15(3), 653–669. doi:10.5194/esd-15-653-2024.
[11] Guo, Q., Wang, C., Wei, R., Zhu, G., Cui, M., & Okolic, C. P. (2020). Qualitative and quantitative analysis of source for organic carbon and nitrogen in sediments of rivers and lakes based on stable isotopes. Ecotoxicology and Environmental Safety, 195, 110436. doi:10.1016/j.ecoenv.2020.110436.
[12] Yin, X., Yan, G., Wang, X., & Zheng, B. (2024). Trends and risk assessment of heavy metals in the surface sediments of river-connected lakes: A case study of Dongting Lake. Marine Pollution Bulletin, 209, 117181. doi:10.1016/j.marpolbul.2024.117181.
[13] Granitto, M., Lopez, M. E., Bursztyn Fuentes, A. L., Maluendez Testoni, M. C., & Rodríguez, P. (2025). Relationship between riparian zones and water quality in the main watersheds of Ushuaia City, Tierra del Fuego (Argentina). Ecological Processes, 14(1), 18. doi:10.1186/s13717-025-00585-1.
[14] Ebling, L. A., & Padial, A. A. (2024). The Connections Between Riparian Vegetation and Water Quality in the Atlantic Forest. Oecologia Australis, 28(4), 256–271. doi:10.4257/oeco.2024.2804.03.
[15] Arce, W. A., & Achá, D. (2025). Allometric determinations in the early development of Schoenoplectus californicus to monitor nutrient uptake in constructed wetlands. Ecohydrology and Hydrobiology, 25(1), 34–41. doi:10.1016/j.ecohyd.2023.11.013.
[16] Blanco, J. A. (2019). Suitability of Totora (Schoenoplectus californicus (C.A. Mey.) Soják) for its use in constructed Wetlands in Areas Polluted with heavy metals. Sustainability (Switzerland), 11(1), 19. doi:10.3390/su11010019.
[17] Macía, M. J., & Balslev, H. (2000). Use and management of totora (Schoenoplectus californicus, Cyperaceae) in Ecuador. Economic Botany, 54(1), 82–89. doi:10.1007/BF02866602.
[18] Zhou, Y., Tian, H., Hu, D., Hu, H., & Shen, Q. (2024). Spatial-Temporal Characteristics of Green Development Level in River Basin. HighTech and Innovation Journal, 5(4), 1068–1084. doi:10.28991/HIJ-2024-05-04-014.
[19] Duque-Trujillo, J. F., Hermelin, M., & Toro, G. E. (2015). The Guamuez (La Cocha) Lake. In Landscapes and Landforms of Colombia. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-319-11800-0_17.
[20] Mendoza, Z. A. (2013). Guide to methods for measuring biodiversity. Agricultural and Renewable Natural Resources. Carrera de Ingeniería Forestal, Universidad Nacional de Loja. Loja-Ecuador, 37(6), 82 (In Spanish).
[21] IDEAM. (2025). Query and download hydrometeorological data. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, Colombia. Available online: http://dhime.ideam.gov.co/atencionciudadano/ (accessed on July 2025). (In Spanish).
[22] APHA. (2017). Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), Washington, United States.
[23] Osorio, N. (2012). How to interpret the results of soil fertility analysis. Bol Manejo Integr Suelo Nutric Veg, 1(6), 1-3. (In Spanish).
[24] Mora, A. (2015). Cationic relationships and their interpretation in soil analysis. AQM Laboratorios, Valladolid, Spain. Available online: https://aqmlaboratorios.com/relaciones-cationicas-analisis-de-suelos/ (accessed on August 2025). (In Spanish).
[25] Ortiz, W. C. (1970). La Cocha: an Andean lake in southern Colombia. Boletin de la Sociedad Geográfica de Colombia, 17(101), 1-13. (In Spanish).
[26] Quiceno Colorado, A. S. (2021). Analysis of some variables associated with water quality as a contribution to the technological search for sensors and their parameterization within the framework of the IOT project for the analysis of water quality in the Rio Blanco wetland. Ph.D. Thesis, Catholic University of Manizales, Manizales, Colombia. (In Spanish).
[27] Ospina, G. A. (2019). Inventory of lakes and advances in the knowledge of high Andean wetlands in the Las Hermosas páramos region, Colombian Central Mountain Range. Entorno Geográfico, 17, 88–111. doi:10.25100/eg.v0i17.8260. (In Spanish).
[28] Celis, A. D. (2022). Evaluation of the effects of land use and land cover changes on water supply and regulation services offered by páramo hydrogeographic units. Master Thesis, Industrial University of Santander, Bucaramanga, Colombia. (In Spanish).
[29] Banerjee, A., Chakrabarty, M., Rakshit, N., Bhowmick, A. R., & Ray, S. (2019). Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach. Ecological Indicators, 100, 99–117. doi:10.1016/j.ecolind.2018.09.051.
[30] Mader, M., Schmidt, C., van Geldern, R., & Barth, J. A. C. (2017). Dissolved oxygen in water and its stable isotope effects: A review. Chemical Geology, 473, 10–21. doi:10.1016/j.chemgeo.2017.10.003.
[31] Leiva-Tafur, D., Goñas, M., Culqui, L., Santa Cruz, C., Rascón, J., & Oliva-Cruz, M. (2022). Spatiotemporal distribution of physicochemical parameters and toxic elements in Lake Pomacochas, Amazonas, Peru. Frontiers in Environmental Science, 10. doi:10.3389/fenvs.2022.885591.
[32] Quay, P. D., Wilbur, D. 0., Richey, J. E., Devol, A. H., Benner, R., & Forsberg, B. R. (1995). The 18O:16O of dissolved oxygen in rivers and lakes in the Amazon Basin: Determining the ratio of respiration to photosynthesis rates in freshwaters. Limnology and Oceanography, 40(4), 718–729. doi:10.4319/lo.1995.40.4.0718.
[33] Moncayo Eraso, R. J., & López Martínez, M. L. (2021). Optimization of water transparency monitoring using MOD09GA. Ciencia e Ingeniería Neogranadina, 31(1), 93–108. doi:10.18359/rcin.4930.
[34] López Martínez, M. L., & Madroñero Palacios, S. M. (2015). Trophic state of a high mountain tropical lake: Case of Laguna de la Cocha. Ciencia e Ingeniería Neogranadina, 25(2), 21. doi:10.18359/rcin.1430.
[35] Kiersch, B., Mühleck, R., & Gunkel, G. (2004). Macrophytes from some high-Andean lakes in Ecuador and their low potential as bioindicators of eutrophication. Revista de biología tropical, 52(4), 829-837. (In Spanish).
[36] Mereta, S. T., De Meester, L., Lemmens, P., Legesse, W., Goethals, P. L. M., & Boets, P. (2020). Sediment and Nutrient Retention Capacity of Natural Riverine Wetlands in Southwest Ethiopia. Frontiers in Environmental Science, 8. doi:10.3389/fenvs.2020.00122.
[37] Qi, J., Deng, L., Song, Y., Qi, W., & Hu, C. (2022). Nutrient Thresholds Required to Control Eutrophication: Does It Work for Natural Alkaline Lakes? Water (Switzerland), 14(17), 2674. doi:10.3390/w14172674.
[38] Amouroux, D., Gandois, L., Galop, D., Le Roux, G., Camarero, L., Catalan, J., ... & Felip, M. (2018). Sensitive high-mountain ecosystems: lakes and peatlands. El cambio climático en los Pirineos: impactos, vulnerabilidades y adaptación, 58-65. (In Spanish).
[39] Cárdenas Calvachi, G. L., & Sánchez Ortiz, I. A. (2013). Nitrogen in wastewater: origins, effects and removal mechanisms to preserve the environment and public health. Universidad y Salud, 15(1), 72-88. (In Spanish).
[40] Feng, J., Zhang, H., Zhang, H., Kang, X., Wang, H., Pan, H., Yang, Q., Yang, Z., Sun, Y., Lou, Y., & Yuping, Z. (2025). Optimization of fertilization combined with water-saving irrigation improves the water and nitrogen utilization efficiency of wheat and reduces nitrogen loss in the Nansi Lake Basin, China. Journal of Integrative Agriculture. doi:10.1016/j.jia.2025.03.013.
[41] Gardham, S., Chariton, A. A., & Hose, G. C. (2015). Direct and indirect effects of copper-contaminated sediments on the functions of model freshwater ecosystems. Ecotoxicology, 24(1), 61–70. doi:10.1007/s10646-014-1355-y.
[42] Wang, S., Pi, Y., Song, Y., Jiang, Y., Zhou, L., Liu, W., & Zhu, G. (2020). Hotspot of dissimilatory nitrate reduction to ammonium (DNRA) process in freshwater sediments of riparian zones. Water Research, 173. doi:10.1016/j.watres.2020.115539.
[43] Mello, K. de, Randhir, T. O., Valente, R. A., & Vettorazzi, C. A. (2017). Riparian restoration for protecting water quality in tropical agricultural watersheds. Ecological Engineering, 108, 514–524. doi:10.1016/j.ecoleng.2017.06.049.
[44] Zaharescu, D. G., Palanca-Soler, A., Hooda, P. S., Tanase, C., Burghelea, C. I., & Lester, R. N. (2017). Riparian ecosystem in the alpine connectome. Terrestrial-aquatic and terrestrial-terrestrial interactions in high elevation lakes. BioRxiv, 601–602. doi:10.1101/035576.
[45] Granados-Sánchez, D., Hernández-García, M. Á., & López-Ríos, G. F. (2006). Riparian zone ecology. Revista Chapingo. Serie ciencias forestales y del ambiente, 12(1), 55-69. (In Spanish).
[46] Handler, A. M., Weber, M., Dumelle, M., Jansen, L. S., Carleton, J. N., Schaeffer, B. A., Paulsen, S. G., Barnum, T., Rea, A. W., Neale, A., & Compton, J. E. (2025). Ecological condition of mountain lakes in the conterminous United States and vulnerability to human development. Ecological Indicators, 173(1), 1–11. doi:10.1016/j.ecolind.2025.113402.
[47] Magri, M., Bondavalli, C., Bartoli, M., Benelli, S., Žilius, M., Petkuviene, J., Vybernaite-Lubiene, I., Vaičiūtė, D., Grinienė, E., Zemlys, P., Morkūnė, R., Daunys, D., Solovjova, S., Bučas, M., Gasiūnaitė, Z. R., Baziukas-Razinkovas, A., & Bodini, A. (2024). Temporal and spatial differences in nitrogen and phosphorus biogeochemistry and ecosystem functioning of a hypertrophic lagoon (Curonian Lagoon, SE Baltic Sea) revealed via Ecological Network Analysis. In Science of the Total Environment (Vol. 921). doi:10.1016/j.scitotenv.2024.171070.
[48] Guimarães, T. C. S. M., Montenegro, K. S., Wasserman, M. A. V., & Wasserman, J. C. (2021). Innovative microcosm experiments for the evaluation of the regeneration rates of nutrients in sediments of a hypersaline lagoon. Marine Pollution Bulletin, 166. doi:10.1016/j.marpolbul.2021.112252.
[49] Zavaleta De la Cruz, L., Ñique Alvarez, M., & Lévano Crisóstomo, J. (2021). Physicochemical Characterization of the Sediments of the Laguna Bella Wetland in the Jungle of Huánuco, Peru. Ecologia Aplicada, 20(2), 161–167. doi:10.21704/rea.v20i2.1806.
[50] Barreto, M. B., Barreto, E., Bonilla, A., Castillo, M., González, L. A., Ramón, J., ... & Velázquez, J. (2009). Comprehensive study of the Bajo Alcatraz-Mata Redonda-La Salineta lagoon system in the Paria Peninsula, Sucre State, Venezuela: geomorphology, hydrology, water quality, vegetation and vertebrates. Acta Biológica Venezuelica, 29(1-2), 1-59. (In Spanish).
[51] Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019. doi:10.1155/2019/5794869.
[52] Guo, Y., Liu, X. F., Dong, Y., Ni, Z., Zhou, C., Chen, C., Wang, S., Chen, Q., & Yan, Y. (2024). The continuous increased stability of sediment dissolved organic matter implies ecosystem degradation of lakes in the cold and arid regions. Science of the Total Environment, 947. doi:10.1016/j.scitotenv.2024.174384.
[53] Kicińska, A., Pomykała, R., & Izquierdo-Diaz, M. (2022). Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1), e13203. doi:10.1111/ejss.13203.
[54] Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., & Schmidt, M. W. I. (2020). A Critical Evaluation of the Relationship Between the Effective Cation Exchange Capacity and Soil Organic Carbon Content in Swiss Forest Soils. Frontiers in Forests and Global Change, 3. doi:10.3389/ffgc.2020.00098.
[55] Golding, L. A., Binet, M. T., Adams, M. S., Hochen, J., Humphrey, C. A., Price, G. A. V., Reichelt-Brushett, A. J., Salmon, M., & Stauber, J. L. (2023). Acute and chronic toxicity of manganese to tropical adult coral (Acropora millepora) to support the derivation of marine manganese water quality guideline values. Marine Pollution Bulletin, 194, 115242. doi:10.1016/j.marpolbul.2023.115242.
[56] Souza, L. R. R., Bernardes, L. E., Barbetta, M. F. S., & da Veiga, M. A. M. S. (2019). Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio. Environmental Science and Pollution Research, 26(23), 24121–24131. doi:10.1007/s11356-019-05713-x.
[57] Fox, A. L., & Trefry, J. H. (2023). Nutrient fluxes from recent deposits of fine-grained, organic-rich sediments in a Florida estuary. Frontiers in Marine Science, 10. doi:10.3389/fmars.2023.1305990.
[58] Wu, J. Y., Gu, L., Hua, Z. L., Li, X. Q., Lu, Y., & Chu, K. J. (2021). Effects of Escherichia coli pollution on decomposition of aquatic plants: Variation due to microbial community composition and the release and cycling of nutrients. Journal of Hazardous Materials, 401, 123252. doi:10.1016/j.jhazmat.2020.123252.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














