Application of Feldspar Sand in Non-Autoclaved Foam Concrete Technology
Downloads
The aim of this study is to determine the possibility of producing non-autoclaved foam concrete of grade M35 with a density of 900 kg/m³. A distinctive feature of this development is the testing of twin samples from the same batch: some were steamed in a chamber at 90 °C under normal atmospheric pressure, while others were autoclaved at a pressure of 8 bar and a temperature of 170 °C. It was established that ordinary natural feldspar sands with a fineness modulus ranging from 1.43 to 2.45, containing quartz below the standard-regulated levels, can be used in the production of non-autoclaved foam concrete. It is not possible to obtain non-autoclaved D900 foam concrete of grade M35 strength using only cement, sand, and foaming agent. To achieve the specified strength, it is necessary to use coarse sand with a fineness modulus (FM) greater than 3, subjected to short-term grinding to reduce the FM to recommended values, and to additionally introduce sol-gel liquid glass. The novelty lies in the experimental confirmation of the features of strength formation in cellular concrete under both non-autoclaved and autoclaved curing conditions. Comparative tests showed that high strength in cellular concrete is achieved only when a chemical bond forms between the products of cement hydrolysis and hydration with quartz sand grains—conditions made possible through autoclaving.
Downloads
[1] Saduakasov, M., Talal, A., Kopzhasarov, B., Akhmetov, D., Nurumov, R., Tokmajeshvili, G., & Kuttybay, M. (2025). Structural Thermal Insulating Foam Concrete Properties for Foundation Insulation. International Journal of Geomate, 28(126), 25–32. doi:10.21660/2025.126.4545.
[2] Chica, L., & Alzate, A. (2019). Cellular concrete review: New trends for application in construction. Construction and building materials, 200, 637-647. doi:10.1016/j.conbuildmat.2018.12.136.
[3] Granik, Yu.G. (2003). Cellular concrete in housing and civil engineering, Construction Materials, 3, 2-6.
[4] Ukhova, T.A. (1993). Resource-saving technologies for the production of products from non-autoclaved cellular concrete. Concrete and Reinforced Concrete, 12, 5-7.
[5] Sebaibi, N., Khadraoui-Mehir, F., Kourtaa, S., & Boutouil, M. (2020). Optimization of non-autoclaved aerated insulating foam using bio-based materials. Construction and Building Materials, 262, 120822. doi:10.1016/j.conbuildmat.2020.120822.
[6] Morgun, L. V. (2005) Structure formation and properties of non-autoclaved fiber-reinforced foam concrete. PhD Thesis, Rostov-on-Don, Russia.
[7] Shakhova, L. D. (2010) Foam concrete technology. Theory and practice. Publishing House of the Association of Construction Universities, Moscow, Russia.
[8] Baranov, I. M. (2008). The strength of non-autoclave foam and possible ways to improve it. Building Materials, 26-30.
[9] Shuisky, A., Stelmakh, S., Shcherban, E., & Torlina, E. (2017). Recipe-technological aspects of improving the properties of non-autoclaved aerated concrete. MATEC Web of Conferences, 129, 05011 122–131. doi:10.1051/matecconf/201712905011.
[10] Samson, G., Phelipot-Mardelé, A., & Lanos, C. (2017). Thermal and mechanical properties of gypsum–cement foam concrete: effects of surfactant. European Journal of Environmental and Civil Engineering, 21(12), 1502–1521. doi:10.1080/19648189.2016.1177601.
[11] Korolev A. S., Voloshin E. A., & Trofimov B. Y. (2005). Improving the strength and thermal insulation properties of cellular concrete by targeted formation of a variotropic structure. Construction materials, 5, 8-9.
[12] Novikov, M. V., Chernyshov, E. M., & Prokshits, E. E. (2021). Strain-stress distribution of structural components from foam concrete for monolithic construction. Key Engineering Materials, 887, 711-717.
[13] Zhdanok, S. A., Polonina, E. N., & Leonovich, S. N. (2020). Experimental Assessment of Nano-Effects in Foam Concrete Technology. Stroitel’nye Materialy, 782(7), 45–48. doi:10.31659/0585-430x-2020-782-7-45-48.
[14] Al-Khazaleh, M., Kumar, P. K., Qtiashat, D., & Alqatawna, A. (2024). Experimental study on strength and performance of foamed concrete with glass powder and zeolite. Civil Engineering Journal, 10(12), 3911-3925. doi:10.28991/CEJ-2024-010-12-06.
[15] Vesova, L. M. (2016). Disperse reinforcing role in producing non-autoclaved cellular foam concrete. Procedia Engineering, 150, 1587-1590. doi:10.1016/j.proeng.2016.07.126.
[16] GOST 21520-89. (2004). Small cellular concrete wall blocks. IPC Publishing House of Standards, Moscow, Russia. (In Russian).
[17] Amran, Y. H. M., Farzadnia, N., & Ali, A. A. A. (2015). Properties and applications of foamed concrete; A review. Construction and Building Materials, 101, 990–1005. doi:10.1016/j.conbuildmat.2015.10.112.
[18] Ben Youssef, M., Miled, K., & Néji, J. (2020). Mechanical properties of non-autoclaved foam concrete: analytical models vs. experimental data. European Journal of Environmental and Civil Engineering, 24(4), 472-480. doi:10.1080/19648189.2017.1398108.
[19] Bing, C., Zhen, W., & Ning, L. (2012). Experimental Research on Properties of High-Strength Foamed Concrete. Journal of Materials in Civil Engineering, 24(1), 113–118. doi:10.1061/(asce)mt.1943-5533.0000353.
[20] Gencel, O., Bilir, T., Bademler, Z., & Ozbakkaloglu, T. (2022). A Detailed Review on Foam Concrete Composites: Ingredients, Properties, and Microstructure. Applied Sciences (Switzerland), 12(11), 5752. doi:10.3390/app12115752.
[21] Hou, L., Li, J., Lu, Z., & Niu, Y. (2021). Influence of foaming agent on cement and foam concrete. Construction and Building Materials, 280. doi:10.1016/j.conbuildmat.2021.122399.
[22] Othuman Mydin, M. A. (2023). Evaluation of the Mechanical Properties of Lightweight Foamed Concrete at Varying Elevated Temperatures. Fire, 6(2), 53. doi:10.3390/fire6020053.
[23] Raj, A., Sathyan, D., & Mini, K. M. (2019). Physical and functional characteristics of foam concrete: A review. Construction and Building Materials, 221, 787–799. doi:10.1016/j.conbuildmat.2019.06.052.
[24] Raj, B., Sathyan, D., Madhavan, M. K., & Raj, A. (2020). Mechanical and durability properties of hybrid fiber reinforced foam concrete. Construction and Building Materials, 245, 118373. doi:10.1016/j.conbuildmat.2020.118373.
[25] Shang, X., Qu, N., & Li, J. (2022). Development and functional characteristics of novel foam concrete. Construction and Building Materials, 324, 126666. doi:10.1016/j.conbuildmat.2022.126666.
[26] Zhou, G., & Su, R. K. L. (2023). A Review on Durability of Foam Concrete. Buildings, 13(7). doi:10.3390/buildings13071880.
[27] Slavcheva, G. S., Chernyshov, E. M., & Novikov, M. V. (2018). Thermal Efficient Foam Concretes of a New Generation for Low-Rise Construction. Stroitel’nye Materialy, 750(7), 20–24. doi:10.31659/0585-430x-2017-750-7-20-24.
[28] Ghahremani, G., Bagheri, A., & Zanganeh, H. (2023). The effect of size and shape of pores on the prediction model of compressive strength of foamed concrete. Construction and Building Materials, 371, 130720. doi:10.1016/j.conbuildmat.2023.130720.
[29] Zhernovskii, I. V., Strokova, V. V., Bondarenko, A. I., Kozhukhova, N. I., & Sobolev, K. G. (2012). Structural Transformations of Quartz Raw Material Durin Mechanical Activation. Stroitelnye Materialy, 56-58.
[30] Coral, E., Avila, C., Gallegos, E., Salazar, A., Barros, L., & Rivera, E. (2025). Cellular concrete: A viable low-carbon alternative for developing countries in seismic regions?. Structural Concrete, 26(3), 2741-2756. doi:10.1002/suco.202400892.
[31] Maglad, A. M., Mydin, M. A. O., Datta, S. D., Abbood, I. S., & Tayeh, B. A. (2024). Impact of anionic surfactant-based foaming agents on the properties of lightweight foamed concrete. Construction and Building Materials, 438, 137–139. doi:10.1016/j.conbuildmat.2024.137119.
[32] Baronins, J., Shishkin, A., Lusis, V., Giosuè, C., Goljandin, D., Novakova, I., Kekez, S., Korjakins, A., Gorelikovs, D., & Gavrilovs, P. (2025). Effect of milling activation of dry components on properties of foamed cement mortar in a two-stage manufacturing process. Case Studies in Construction Materials, 22, 4465. doi:10.1016/j.cscm.2025.e04465.
[33] Ser, M., Hussin, A. E., said, A., & Kohail, M. (2025). Enhancing the sustainable production of Foamed Concrete by using different waste materials as a full sand replacement. Construction and Building Materials, 462, 139890. doi:10.1016/j.conbuildmat.2025.139890.
[34] GOST 25485-2019. (2019). Cellular concrete. General specifications. Standartinform, Moscow, Russia. (In Russian).
[35] GOST 31359-2007. (2007). Autoclaved cellular concrete. Standartinform, Moscow, Russia. (In Russian).
[36] GOST 310.2-76. (2003). Cements. Methods for Determining Fineness of Grinding. Standartinform, Moscow, Russia.
[37] GOST 5382-2019. (2019). Cements and Materials for Cement Production. Methods of Chemical Analysis. Standartinform, Moscow, Russia.. (In Russian).
[38] GOST 8735-88. (2018). Sand for Construction Work. Test Methods. Standartinform, Moscow, Russia. (In Russian).
[39] SN 277-80. (1980). Instructions for the Manufacture of Cellular Concrete Products. Stroyizdat, Moscow, Russia. (In Russian).
[40] Chen, Y. L., Chang, J. E., Lai, Y. C., & Chou, M. I. M. (2017). A comprehensive study on the production of autoclaved aerated concrete: Effects of silica-lime-cement composition and autoclaving conditions. Construction and Building Materials, 153, 622-629. doi:10.1016/j.conbuildmat.2017.07.116.
[41] Bozhenov, P. I., & Satin, M. S. (1960) Autoclaved foam concrete. Stroyizdat, Moscow, Russia.
[42] Ramachandran, V., Feldman, R., & Baudouin, J. (1981) Science of concrete. Stroyizdat, Moscow, Russia.
[43] GOST 12852.1-77. (1978). Cellular concrete. Test methods. Publishing House of Standards, Moscow, Russia. (In Russian).
[44] SP RK 2.03-30-2017. (2017). Construction in seismic zones. Code of Rules of the Republic of. Kazakhstan. Astana, Kazakhstan.
[45] Komokhov, P.G. (2006) Sol-gel as a concept of nanotechnology of cement composite. Construction Materials, 14-15.
[46] Yanze, G. A. N., Duna, L. L., Kaze, R. C., Naghizadeh, A., Nana, A., Elie, K., & Chinje, F. U. (2024). Effects of chemically treated coconut fibers on the hydric, physico-mechanical and thermal properties of plaster materials resulting from hydrated clay-lime mixtures. Innovative Infrastructure Solutions, 9(12), 458. doi:10.1007/s41062-024-01756-3.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














