Geomechnical Characterization of Lateritic Soil by Combining Crushed Granite and Low Content of Cement
Downloads
Lateritic soils, which are widespread in intertropical regions and traditionally used as pavement sub-base layers in Burkina Faso, often exhibit low geomechanical performance, thereby limiting their long-term durability under increasingly heavy traffic loads. This study investigates a combined stabilization approach consisting of incorporating 20% of 10/20 crushed granite aggregates together with low cement content (0%, 1%, 2%, and 3%). The objective was to improve both the mechanical properties and fracture behavior of these soils, while reducing the environmental footprint associated with cement use. Accordingly, an experimental program was carried out, including geotechnical tests (maximum dry density, optimum moisture content, and CBR at 95% compaction) and mechanical characterizations (unconfined compressive strength, indirect tensile strength, Young’s modulus, and full stress–strain behavior under uniaxial compression). The results revealed substantial improvements when 20% aggregates and 3% cement were added to the raw soil: the maximum dry density increased by approximately 5%, the CBR by 2253%, the compressive strength by 134%, the indirect tensile strength by 85%, and the Young’s modulus by 195%. Regarding fracture behavior, the same mixture showed an enhanced energy absorption capacity, with increases of approximately 40% for fracture energy, 65% for peak energy, 87% for elastic energy, 18% for plastic energy, and 5% for post-peak energy. These findings confirm that the combination of crushed aggregates and low cement content produces a synergistic effect, yielding a material that is stronger, stiffer, more water resistant, and more ductile. Thus, innovative stabilization approach represents a promising alternative for sustainable road construction.
Downloads
[1] Colin, F., Beauvais, A., Ambrosi, J. P., & Nahon, D. (2004). Laterites in tropical environments, a source of metals of economic interest. Assises de la Recherche Française dans le Pacifique, 23-27 August, 2004, Nouméa, New Caledonia. (In French).
[2] Kouassi, K. P., Atto Yapi, D. S. R., Konin, A., & Grehoa, A. M. (2023). Chemical and Mineralogical Characterisation of Clayey Sands from the Ivorian Serimentaru Basin in Road Construction. European Scientific Journal, ESJ, 19(30), 94. doi:10.19044/esj.2023.v19n30p94.
[3] Mbengue, M. T. M., Lawane Gana, A., Messan, A., Mone, O., & Pantet, A. (2023). Effect of the Type of Lateritic Soil on the Effectiveness of Geomechanical Improvement Using a Low Quantity of Cement for Sustainable Road Construction. Materials, 16(21), 6891. doi:10.3390/ma16216891.
[4] Legma, A. A. (2023). Improvement of Lateritic Gravelly Soil Using Cement and Litho-Stabilization and Its Application Case of Main Road Artery on the City Side of the New Ouagadougou-Donsin airport. Academic Journal of Architecture and Geotechnical Engineering, 5(6), 51-60. doi:10.25236/ajage.2023.050610.
[5] Okeke, Z. U., Onunkwo, O. C., Agidi, A. A., Amadi, B. M., & Onwuchekwa, C. C. (2024). Engineering Behaviour of Cement-Stabilized Lateritic Soils Derived from Various Geologic Formations in Awka Area. Southeastern Nigeria. Engineering Research Journal, 4(4), 32–53.
[6] Solihu, H. (2020). Cement Soil Stabilization as an Improvement Technique for Rail Track Subgrade, and Highway Subbase and Base Courses: A Review. Journal of Civil and Environmental Engineering, 10(3), 1-6. doi:10.37421/jcde.2020.10.344.
[7] Afrin, H. (2017). A Review on Different Types Soil Stabilization Techniques. International Journal of Transportation Engineering and Technology, 3(2), 19. doi:10.11648/j.ijtet.20170302.12.
[8] Roshan, M. J., & Rashid, A. S. B. A. (2024). Geotechnical characteristics of cement stabilized soils from various aspects: A comprehensive review. Arabian Journal of Geosciences, 17(1), 1. doi:10.1007/s12517-023-11796-1.
[9] Roshan, M. J., A Rashid, A. S., Jusoh, S. N., Horpibulsuk, S., Razali, R., Tamassoki, S., Malistani, N., & Ismail, A. (2024). Behaviour of Cement-Stabilised Lateritic Soil: An Experimental Study. Indian Geotechnical Journal, 55(5), 3176–3192. doi:10.1007/s40098-024-01115-0.
[10] Wahab, N. A., Roshan, M. J., Rashid, A. S. A., Hezmi, M. A., Jusoh, S. N., Norsyahariati, N. D. N., & Tamassoki, S. (2021). Strength and durability of cement-treated lateritic soil. Sustainability (Switzerland), 13(11), 6430. doi:10.3390/su13116430.
[11] Mengue, E., Mroueh, H., Lancelot, L., & Eko, R. M. (2017). Mechanical Improvement of a Fine-Grained Lateritic Soil Treated with Cement for Use in Road Construction. Journal of Materials in Civil Engineering, 29(11), 4017206. doi:10.1061/(asce)mt.1943-5533.0002059.
[12] CEBTP. (1984). Practical guide to pavement design for tropical countries. Centre Expérimental de Recherches et d'Études du Bâtiment et des Travaux Publics (CEBTP), Paris, France. (In French).
[13] Liu, B., Zhu, L., Liu, X., Liu, Q., Fan, Y., Yao, W., & Deng, W. (2024). Energy evolution and damage deformation behavior of cemented broken coal specimen under triaxial compression condition. Energy, 310, 133203. doi:10.1016/j.energy.2024.133203.
[14] Tran, N. Q., Hoy, M., Suddeepong, A., Horpibulsuk, S., Kantathum, K., & Arulrajah, A. (2022). Improved mechanical and microstructure of cement-stabilized lateritic soil using recycled materials replacement and natural rubber latex for pavement applications. Construction and Building Materials, 347, 128547. doi:10.1016/j.conbuildmat.2022.128547.
[15] Sariosseiri, F., & Muhunthan, B. (2009). Effect of cement treatment on geotechnical properties of some Washington State soils. Engineering Geology, 104(1–2), 119–125. doi:10.1016/j.enggeo.2008.09.003.
[16] Tran, N. P., Gunasekara, C., Law, D. W., Houshyar, S., Setunge, S., & Cwirzen, A. (2021). A critical review on drying shrinkage mitigation strategies in cement-based materials. Journal of Building Engineering, 38, 102210. doi:10.1016/j.jobe.2021.102210.
[17] George, K. P. (1968). Shrinkage characteristics of soil-cement mixtures. Highway Research Record, 255, 42-58.
[18] LCPC-SETRA. (2000). Soil treatment with lime and/or hydraulic binders: Application to the construction of embankments and subgrade layers. (In French).
[19] Sabahy, A., EL-Sheshny, A.-R. A., Elsamra, E. A., Eid, M. M. M., & Essam, M. (2024). Effects of Varied Soil Leveling Methods on Physical Properties: A Comparative Analysis. Civil Engineering Journal, 10(11), 3672-3682. doi:10.28991/CEJ-2024-010-11-014.
[20] Verástegui-Flores, R. D., & Di Emidio, G. (2014). Impact of sulfate attack on mechanical properties and hydraulic conductivity of a cement-admixed clay. Applied Clay Science, 101, 490–496. doi:10.1016/j.clay.2014.09.012.
[21] Massoumi Nejad, B., Enferadi, S., & Andrew, R. (2025). A comprehensive analysis of process-related CO2 emissions from Iran’s cement industry. Cleaner Environmental Systems, 16, 100251. doi:10.1016/j.cesys.2024.100251.
[22] Mbengue, M. T. M., Gana, A. L., Messan, A., & Pantet, A. (2022). Geotechnical and Mechanical Characterization of Lateritic Soil Improved with Crushed Granite. Civil Engineering Journal (Iran), 8(5), 843–862. doi:10.28991/CEJ-2022-08-05-01.
[23] Issiakou, M. S., Saiyouri, N., Anguy, Y., Gaborieau, C., & Fabre, R. (2015). Study of Lateritic Materials Used in Road Construction in Niger: Improvement Method. Rencontres Universitaires de Génie Civil, 27-29 May, 2015, Anglet, France. (In French).
[24] Hyoumbi, W. T., Pizette, P., Wouatong, A. S. L., Abriak, N. E., Borrel, L. R., Razafimahatratra, F. N., & Guiouillier, T. (2019). Investigations of the Crushed Basanite Aggregates Effects on Lateritic Fine Soils of Bafang Area (West-Cameroon). Geotechnical and Geological Engineering, 37(3), 2147–2164. doi:10.1007/s10706-018-0751-0.
[25] Houanou, K. A., Dossou, K. S., Prodjinonto, V., Ahouétohou, P., & Olodo, E. (2022). Mechanical characteristics of Avlamè lateritic gravel improved with granite crushed for its use in road construction in Benin. World Journal of Advanced Research and Reviews, 15(2), 279–292. doi:10.30574/wjarr.2022.15.2.0820.
[26] Daheur, E. G., Goual, I., & Taibi, S. (2015). Effect of Immersion on the Mechanical Behavior of a Gypsomalicary Tuf Treated with Organic or Hydraulic Binders. 3ème colloque international sur les sols non saturés, 16-17 November, 2015, Batna, Algeria. (In French).
[27] Melbouci, B. (2017). Comparative Study of the Treatment of Marl Soil with Lime and Cement in Road Sub-Layers. Communication Science & technology, 18. (In French).
[28] Ndiaye, M., Magnan, J. P., Cisse, I. K., & Cisse, L. (2013). Study of the improvement of laterites in Senegal by the addition of sand. Bulletin des laboratoires des ponts et chaussées. (In French).
[29] Chah, C. N., Sekharan, S., & Katiyar, V. (2025). Geotechnical characterisation and sustainability assessment of plastic waste inclusions on a cement-treated fine-grained soil for pavement applications. Transportation Geotechnics, 51, 101515. doi:10.1016/j.trgeo.2025.101515.
[30] Que, Y., Jia, S., Wang, L., Fang, L., & Mu, H. (2025). Substitution of Tailings Sand in Cement-Stabilized Gravel Base Material for Road Construction: Mechanical Properties, Durability, and Microstructure. Journal of Materials in Civil Engineering, 37(4), 4025045. doi:10.1061/jmcee7.mteng-18380.
[31] Daheur, E. G., Li, Z. Sen, Demdoum, A., Taibi, S., & Goual, I. (2023). Valorisation of dune sand-tuff for Saharan pavement design. Construction and Building Materials, 366, 130239. doi:10.1016/j.conbuildmat.2022.130239.
[32] Daheur, E. G., Goual, I., Taibi, S., & Mitiche-Kettab, R. (2019). Effect of Dune Sand Incorporation on the Physical and Mechanical Behaviour of Tuff: (Experimental Investigation). Geotechnical and Geological Engineering, 37(3), 1687–1701. doi:10.1007/s10706-018-0715-4.
[33] Imafidon, D., Ogirigbo, O. R., & Ehiorobo, J. O. (2021). Improvement of deltaic lateritic soil using river sand and cement for use as pavement construction material. Nigerian Journal of Technology, 40(2), 168–176. doi:10.4314/njt.v40i2.1.
[34] Salehi, M., Bayat, M., Saadat, M., & Nasri, M. (2021). Experimental Study on Mechanical Properties of Cement-Stabilized Soil Blended with Crushed Stone Waste. KSCE Journal of Civil Engineering, 25(6), 1974–1984. doi:10.1007/s12205-021-0953-5.
[35] Savadogo, N., Traore, Y, B,. Kocty, R & Mone, O. (2024). Stabilization of lateritic soil with Portland cement and crushed granite for pavement base courses. World Journal of Advanced Research and Reviews, 23(3), 3090–3099. doi:10.30574/wjarr.2024.23.3.2914.
[36] Okonkwo, V. O., Omaliko, I. K., & Ezema, N. M. (2022). Stabilization of Lateritic Soil with Portland Cement and Sand for Road Pavement. OALib, 09(06), 1–15. doi:10.4236/oalib.1108560.
[37] Hoy, M., Tran, N. Q., Suddeepong, A., Horpibulsuk, S., Mobkrathok, M., Chinkulkijniwat, A., & Arulrajah, A. (2023). Improved fatigue properties of cement-stabilized recycled materials – Lateritic soil using natural rubber latex for sustainable pavement applications. Transportation Geotechnics, 40, 100959. doi:10.1016/j.trgeo.2023.100959.
[38] Pegalajar, M. C., Ruiz, L. G. B., Sánchez-Marañón, M., & Mansilla, L. (2020). A Munsell colour-based approach for soil classification using Fuzzy Logic and Artificial Neural Networks. Fuzzy Sets and Systems, 401, 38–54. doi:10.1016/j.fss.2019.11.002.
[39] NF EN ISO 17892-4. (2018). Geotechnical investigation and testing - Laboratory tests on soils - Part 4: Determination of particle size distribution. Association Française de Normalisation, Paris, France. (In French).
[40] NF EN ISO 17892-12. (2018). Geotechnical investigations and testing - Laboratory tests on soils - Part 12: Determination of liquid and plastic limits. Association Française de Normalisation, Paris, France. (In French).
[41] NF EN 933-9. (2022). Tests for geometrical properties of aggregates - Part 9: assessment of fines - Methylene blue test.Association Française de Normalisation, Paris, France. (In French).
[42] NF P 94-093. (2014). Soils: investigation and testing - Determination of the compaction reference values of a soil type - Standard proctor test - Modified proctor test. Association Française de Normalisation, Paris, France. (In French).
[43] NF P 94-078. (1997). Soils: investigation and tests. CBR after immersion. Immediate CBR. Immediate bearing ratio. Measurement on sample compacted in CBR mould. Association Française de Normalisation, Paris, France. (In French).
[44] NF EN 13286-41. (2003). Unbound and hydraulically bound mixtures - Part 41: test method for the determination of the compressive strength of hydraulically bound mixtures. Association Française de Normalisation, Paris, France. (In French).
[45] NF EN 13286-43. (2003). Unbound and hydraulically bound mixtures - Part 43: test method for the determination of the modulus of elasticity of hydraulically bound mixtures. Association Française de Normalisation, Paris, France. (In French).
[46] Mengue, E. (2015). Evaluation of the mechanical behavior of a cement-treated lateritic soil for road applications. PhD Thesis, University of Lille, Lille, France. (In French).
[47] NF EN 13286-42. (2003). Unbound and hydraulically bound mixtures - Part 42: test method for the determination of the indirect tensile strength of hydraulically bound mixtures. PhD Thesis, University of Lille, Lille, France. (In French).
[48] GTR. (2000). Construction of Embankments and Subgrade Layers, Booklets I and II (2nd ed.). GTR SETRA-LCPC, IDRRIM: Paris France. (In French).
[49] HRB (1958). Proceedings of the annual Meeting-Highway Research Board. Highway Research Board, Washington, D.C., United States.
[50] Bakaiyang, L., Madjadoumbaye, J., Boussafir, Y., Szymkiewicz, F., & Duc, M. (2021). Re-use in road construction of a Karal-type clay-rich soil from North Cameroon after a lime/cement mixed treatment using two different limes. Case Studies in Construction Materials, 15, 626. doi:10.1016/j.cscm.2021.e00626.
[51] Bekki, H., Djilaili, Z., Tlidji, Y., & Daouadji, T. H. (2015). Durability of treated silty soil using lime and cement in road construction – a comparative study. The Online Journal of Science and Technology (TOJSAT), 5, 23–31, 5(2), 23–31.
[52] Millogo, Y., Hajjaji, M., Ouedraogo, R., & Gomina, M. (2008). Cement-lateritic gravels mixtures: Microstructure and strength characteristics. Construction and Building Materials, 22(10), 2078–2086. doi:10.1016/j.conbuildmat.2007.07.019.
[53] Portelinha, F. H. M., Lima, D. C., Fontes, M. P. F., & Carvalho, C. A. B. (2012). Modification of a lateritic soil with lime and cement: An economical alternative for flexible pavement layers. Soils and Rocks, 35(1), 51–63. doi:10.28927/sr.351051.
[54] Bagarre, E. (1990). Use of lateritic gravels in road construction. Institut des Sciences et des Techniques de L'équipement et de L'environnement pour le Développement (ISTED). (In French).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














