Empirical Analysis of Risk Behavior in Truck Drivers Across Industrial Zones and Policy Recommendations
Downloads
Truck drivers play a crucial role in industrial development but face disproportionately high risks of traffic-related injuries and fatalities. These risks arise from complex traffic conditions, especially in truck-congested industrial zones, and economic pressures that encourage risky driving behaviors. This study investigates key factors influencing these behaviors among truck drivers in industrial zones using an integrated framework combining the Health Belief Model and Protection Motivation Theory, a novel approach in this context. A random parameter model was employed to account for unobserved heterogeneity in drivers’ responses. The results highlight several significant psychological factors: perceived susceptibility (when drivers perceive the risk of crashes while driving), perceived severity (when drivers feel that crashes will impact their work), perceived barriers (when truck drivers perceive that fastening seat belts causes discomfort and when they perceive safety equipment for vehicles as expensive and unaffordable), cues to action (when truck drivers encounter safe driving campaigns), and health motivation (when truck drivers prioritize adequate rest and relaxation). Additionally, the study identifies route familiarity as a random effect, revealing variations in how this factor influences behavior across individuals. The study provides practical, evidence-based policy recommendations aimed at reducing road injuries and fatalities among truck drivers, offering valuable insights for policymakers, transport authorities, and logistics stakeholders.
Downloads
[1] WHO. (2015). Global status report on road safety 2023. World Health Organization (WHO), Geneva, Switzerland. Available online: https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023 (accessed on September 2025).
[2] Wisutwattanasak, P., Jomnonkwao, S., Se, C., Champahom, T., & Ratanavaraha, V. (2023). Correlated random parameters model with heterogeneity in means for analysis of factors affecting the perceived value of road accidents and travel time. Accident Analysis & Prevention, 183. doi:10.1016/j.aap.2023.106992.
[3] Jadaan, K., Al-Braizat, E., Al-Rafayah, S., Gammoh, H., & Abukahlil, Y. (2018). Traffic Safety in Developed and Developing Countries: A Comparative Analysis. Journal of Traffic and Logistics Engineering, 2018, 1–5. doi:10.18178/jtle.6.1.1-5.
[4] WHO. (2015). Global Status Report on Road Safety 2018: Summary. World Health Organization (WHO), Geneva, Switzerland. Available online: https://www.who.int/publications/i/item/WHO-NMH-NVI-18.20 (accessed on September 2025).
[5] Seefong, M., Wisutwattanasak, P., Se, C., Theerathitichaipa, K., Jomnonkwao, S., Champahom, T., Ratanavaraha, V., & Kasemsri, R. (2024). A study of motorcycle riders related to speeding behavior in Thailand’s Industrial zones. Scientific Reports, 14(1), 1–14. doi:10.1038/s41598-024-81793-1.
[6] MOT. (2025). Accidents on the road network of the Ministry of Transport - MOT Data Catalog, Ministry of Transport, Ministry of Transport, Bangkok, Thailand. Available online: https://datagov.mot.go.th/dataset/roadaccident (accessed on September 2025). (In Thai).
[7] Seefong, M., Wisutwattanasak, P., Se, C., Theerathitichaipa, K., Jomnonkwao, S., Champahom, T., Ratanavaraha, V., & Kasemsri, R. (2023). Big Data Analytics with the Multivariate Adaptive Regression Splines to Analyze Key Factors Influencing Accident Severity in Industrial Zones of Thailand: A Study on Truck and Non-Truck Collisions. Big Data and Cognitive Computing, 7(3), 156. doi:10.3390/bdcc7030156.
[8] Niu, Y., Li, Z., & Fan, Y. (2021). Analysis of truck drivers’ unsafe driving behaviors using four machine learning methods. International Journal of Industrial Ergonomics, 86, 103192. doi:10.1016/j.ergon.2021.103192.
[9] Dadipoor, S., Ranaei, V., Ghaffari, M., Rakhshanderou, S., & Safari-Moradabadi, A. (2020). Safe driving behaviors among taxi drivers: a predictive cross-sectional study based on the health belief model. Archives of Public Health, 78(1), 82. doi:10.1186/s13690-020-00469-0.
[10] Shandhana Rashmi, B., & Marisamynathan, S. (2023). Factors affecting truck driver behavior on a road safety context: A critical systematic review of the evidence. Journal of Traffic and Transportation Engineering (English Edition), 10(5), 835–865. doi:10.1016/j.jtte.2023.04.006.
[11] Zhang, B., Huang, Y. H., Rau, P. L. P., Roetting, M., & Liu, C. (2006). A study of Chinese truck drivers’ attitudes toward feedback by technology. Safety Science, 44(8), 747–752. doi:10.1016/j.ssci.2006.03.005.
[12] Wei, C. H., Lee, Y., Luo, Y. W., & Lu, J. J. (2021). Incorporating personality traits to assess the risk level of aberrant driving behaviors for truck drivers. International Journal of Environmental Research and Public Health, 18(9), 4601. doi:10.3390/ijerph18094601.
[13] Belzer, M. H., & Sedo, S. A. (2018). Why do long distance truck drivers work extremely long hours? Economic and Labour Relations Review, 29(1), 59–79. doi:10.1177/1035304617728440.
[14] Sullman, M. J. M., Meadows, M. L., & Pajo, K. B. (2002). Aberrant driving behaviours amongst New Zealand truck drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 5(3), 217–232. doi:10.1016/S1369-8478(02)00019-0.
[15] Hege, A., Lemke, M. K., Apostolopoulos, Y., & Sönmez, S. (2018). Occupational health disparities among U.S. Long-haul truck drivers: The influence of work organization and sleep on cardiovascular and metabolic disease risk. PLoS ONE, 13(11), 0207322. doi:10.1371/journal.pone.0207322.
[16] Belastegi-Axpe, X., Aritzeta, A., Soroa, G., & Pascual, M. (2020). Development and validation of the Drivers’ Emotional Intelligence Inventory (EMOVIAL). Transportation Research Part F: Traffic Psychology and Behaviour, 72, 110–116. doi:10.1016/j.trf.2020.05.007.
[17] Mullane, S. L., Connolly, D., & Buman, M. P. (2019). The Perceived Value of Reducing Sedentary Behavior in the Truck Driving Population. Frontiers in Public Health, 7. doi:10.3389/fpubh.2019.00214.
[18] Widyanti, A., Gananda, J. M., Yudhistira, T., Weningtyas, W., Bowo, L. P., & Nugoroho, S. (2025). Over-Dimension and Over-Load (ODOL) truck in highways: Prevalence and modeling intention to operate ODOL truck, lesson learned from Indonesia. Transportation Research Interdisciplinary Perspectives, 29. doi:10.1016/j.trip.2024.101320.
[19] Liang, Z., Zhan, X., Deng, R., & Fu, X. (2024). Research on Risky Driving Behavior of Young Truck Drivers: Improved Theory of Planned Behavior Based on Risk Perception Factor. Journal of Advanced Transportation, 9966501. doi:10.1155/2024/9966501.
[20] Hussain, G., Batool, I., Kanwal, N., & Abid, M. (2019). The moderating effects of work safety climate on socio-cognitive factors and the risky driving behavior of truck drivers in Pakistan. Transportation Research Part F: Traffic Psychology and Behaviour, 62, 700–715. doi:10.1016/j.trf.2019.02.017.
[21] Baikejuli, M., Shi, J., & Qian, Q. (2023). Mobile phone use among truck drivers: The application and extension of the theory of planned behavior. Accident Analysis & Prevention, 179, 106894. doi:10.1016/j.aap.2022.106894.
[22] Zhang, J., Zhao, X., Yao, Y., Ou, J., & Xiang, Y. (2025). The influence of individual characteristics and working environment on driving performance of truck drivers. Safety Science, 185. doi:10.1016/j.ssci.2025.106809.
[23] Rashmi, B. S., & Marisamynathan, S. (2024). An investigation of relationships between aberrant driving behavior and crash risk among long-haul truck drivers traveling across India: A Structural Equation Modeling approach. Journal of Transport & Health, 38. doi:10.1016/j.jth.2024.101871.
[24] Han, W., Zhao, J., & Chang, Y. (2021). Driver behaviour and traffic accident involvement among professional heavy semi-trailer truck drivers in China. PLOS ONE, 16(12), e0260217. doi:10.1371/journal.pone.0260217.
[25] Gupta, L., Goswami, S., & Kumar, R. (2021). Analysis of driver behaviours towards road safety measures using DBQ in the Indian context. Transactions on Transport Sciences, 12(1), 12–18. doi:10.5507/tots.2021.001.
[26] Tareke, K. M. (2023). How the driving behaviors and customer handling of public transportation operators have been impacted by the COVID-19 pandemic in Addis Ababa, Ethiopia: the perspective of protection motivation theory? Frontiers in Sustainable Cities, 5. doi:10.3389/frsc.2023.1140838.
[27] Gabaldon, J., Niranjan, S., Hawkins, T. G., McBride, M. E., & Savitskie, K. (2024). Analyzing Protection Motivation Theory and Cognitive Failures in Texting While Driving Behavior Among Young Drivers. Applied Cognitive Psychology, 38(6), e4252. doi:10.1002/acp.4252.
[28] Chen, A., & Lu, Y. (2021). Protective behavior in ride-sharing through the lens of protection motivation theory and usage situation theory. International Journal of Information Management, 61. doi:10.1016/j.ijinfomgt.2021.102402.
[29] Dunu, I. V. (2020). Influence of Commercial Motorcyclists to Road Safety Campaign on Helmet Use in Nnewi , Anambra State. International Journal of Innovative Science and Research Technology, 5(2), 968–979.
[30] Sadeghloo, T., Seyfi, S., Bouzarjomehry, K., Yarahmadi, M., & Vo-Thanh, T. (2025). Exploring parental risk perceptions in family travel in rural destinations. Tourism Recreation Research, 50(4), 941–956. doi:10.1080/02508281.2024.2319562.
[31] Qi, W., Zhu, S., & Long, W. (2023). Exploring the factors that affect the defensive driving behavior of bus drivers: the application of TPB and PMT theories. Public Transport, 15(1), 227–251. doi:10.1007/s12469-022-00306-3.
[32] Harbeck, E. L., Glendon, A. I., & Hine, T. J. (2018). Young driver perceived risk and risky driving: A theoretical approach to the “fatal five.” Transportation Research Part F: Traffic Psychology and Behaviour, 58, 392–404. doi:10.1016/j.trf.2018.06.018.
[33] Razmara, A., Aghamolaei, T., Madani, A., Hosseini, Z., & Zare, S. (2018). Prediction of safe driving Behaviours based on health belief model: The case of taxi drivers in Bandar Abbas, Iran. BMC Public Health, 18(1), 1–8. doi:10.1186/s12889-018-5300-5.
[34] Champahom, T., Wisutwattanasak, P., Se, C., Banyong, C., Jomnonkwao, S., & Ratanavaraha, V. (2023). Analysis of Factors Associated with Highway Personal Car and Truck Run-Off-Road Crashes: Decision Tree and Mixed Logit Model with Heterogeneity in Means and Variances Approaches. Informatics, 10(3), 66. doi:10.3390/informatics10030066.
[35] Wang, W., Yuan, Z., Liu, Y., Yang, X., & Yang, Y. (2019). A Random Parameter Logit Model of Immediate Red-Light Running Behavior of Pedestrians and Cyclists at Major-Major Intersections. Journal of Advanced Transportation, 2345903. doi:10.1155/2019/2345903.
[36] Ye, F., Cheng, W., Wang, C., Liu, H., & Bai, J. (2021). Investigating the severity of expressway crash based on the random parameter logit model accounting for unobserved heterogeneity. Advances in Mechanical Engineering, 13(12), 16878140211067278. doi:10.1177/16878140211067278.
[37] Šarić, Ž., Xu, X., Xiao, D., & Vrkljan, J. (2021). Exploring injury severity of pedestrian-vehicle crashes at intersections: unbalanced panel mixed ordered probit model. European Transport Research Review, 13(1), 63. doi:10.1186/s12544-021-00524-z.
[38] Se, C., Champahom, T., Jomnonkwao, S., Chaimuang, P., & Ratanavaraha, V. (2021). Empirical comparison of the effects of urban and rural crashes on motorcyclist injury severities: A correlated random parameters ordered probit approach with heterogeneity in means. Accident Analysis & Prevention, 161. doi:10.1016/j.aap.2021.106352.
[39] Fountas, G., Anastasopoulos, P. C., & Abdel-Aty, M. (2018). Analysis of accident injury-severities using a correlated random parameters ordered probit approach with time variant covariates. Analytic Methods in Accident Research, 18, 57–68. doi:10.1016/j.amar.2018.04.003.
[40] Washington, S., Karlaftis, M., Mannering, F., & Anastasopoulos, P. (2020). Statistical and Econometric Methods for Transportation Data Analysis. Chapman and Hall/CRC, Boca Raton, United States. doi:10.1201/9780429244018.
[41] Se, C., Champahom, T., Wisutwattanasak, P., Jomnonkwao, S., & Ratanavaraha, V. (2023). Temporal instability and differences in injury severity between restrained and unrestrained drivers in speeding-related crashes. Scientific Reports, 13(1), 9756. doi:10.1038/s41598-023-36906-7.
[42] Sarwar, M. T., Anastasopoulos, P. C., Ukkusuri, S. V., Murray-Tuite, P., & Mannering, F. L. (2018). A statistical analysis of the dynamics of household hurricane-evacuation decisions. Transportation, 45(1), 51–70. doi:10.1007/s11116-016-9722-6.
[43] Se, C., Champahom, T., Jomnonkwao, S., Wisutwattanasak, P., Laphrom, W., & Ratanavaraha, V. (2023). Temporal Instability and Transferability Analysis of Daytime and Nighttime Motorcyclist-Injury Severities Considering Unobserved Heterogeneity of Data. Sustainability (Switzerland), 15(5), 4486. doi:10.3390/su15054486.
[44] Ahmed, S. S., Cohen, J., & Anastasopoulos, P. C. (2021). A correlated random parameters with heterogeneity in means approach of deer-vehicle collisions and resulting injury-severities. Analytic Methods in Accident Research, 30, 100160. doi:10.1016/j.amar.2021.100160.
[45] Hou, Q., Huo, X., & Leng, J. (2020). A correlated random parameters tobit model to analyze the safety effects and temporal instability of factors affecting crash rates. Accident Analysis & Prevention, 134. doi:10.1016/j.aap.2019.105326.
[46] Hou, Q., Huo, X., Tarko, A. P., & Leng, J. (2021). Comparative analysis of alternative random parameters count data models in highway safety. Analytic Methods in Accident Research, 30. doi:10.1016/j.amar.2021.100158.
[47] Se, C., Champahom, T., Jomnonkwao, S., Karoonsoontawong, A., & Ratanavaraha, V. (2021). Temporal stability of factors influencing driver-injury severities in single-vehicle crashes: A correlated random parameters with heterogeneity in means and variances approach. Analytic Methods in Accident Research, 32, 100179. doi:10.1016/j.amar.2021.100179.
[48] Fountas, G., & Anastasopoulos, P. C. (2017). A random thresholds random parameters hierarchical ordered probit analysis of highway accident injury-severities. Analytic Methods in Accident Research, 15, 1–16. doi:10.1016/j.amar.2017.03.002.
[49] Tavafian, S. S., Aghamolaei, T., Gregory, D., & Madani, A. (2011). Prediction of Seat Belt Use Among Iranian Automobile Drivers: Application of the Theory of Planned Behavior and the Health Belief Model. Traffic Injury Prevention, 12(1), 48–53. doi:10.1080/15389588.2010.532523.
[50] Amaral, R. A., Malbergier, A., Lima, D. R., Santos, V. C. V., Gorenstein, C., & Andrade, A. G. De. (2017). Intention to Drive after Drinking among Medical Students: Contributions of the Protection Motivation Theory. Journal of Addiction Medicine, 11(1), 70–76. doi:10.1097/ADM.0000000000000276.
[51] Kutner, M.H., Nachtsheim, C.J., Neter, J. and Li, W. (2005) Applied Linear Statistical Models (5th Ed.). McGraw-Hill, New York, United States.
[52] Hair Jr., J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2009) Multivariate Data Analysis (7th Ed.), Prentice Hall, Hoboken, United States.
[53] Se, C., Champahom, T., Laphrom, W., Jomnonkwao, S., & Ratanavaraha, V. (2023). Analysis of factors influencing crash injury severities at highway–rail grade crossings accommodating for unobserved heterogeneity. Frontiers in Built Environment, 9. doi:10.3389/fbuil.2023.1255762.
[54] Alnawmasi, N., & Mannering, F. (2019). A statistical assessment of temporal instability in the factors determining motorcyclist injury severities. Analytic Methods in Accident Research, 22, 100090. doi:10.1016/j.amar.2019.100090.
[55] Alogaili, A., & Mannering, F. (2022). Differences between day and night pedestrian-injury severities: Accounting for temporal and unobserved effects in prediction. Analytic Methods in Accident Research, 33, 100201. doi:10.1016/j.amar.2021.100201.
[56] Kovaceva, J., Bärgman, J., & Dozza, M. (2022). On the importance of driver models for the development and assessment of active safety: A new collision warning system to make overtaking cyclists safer. Accident Analysis & Prevention, 165. doi:10.1016/j.aap.2021.106513.
[57] Jing, L., Shan, W., & Zhang, Y. (2023). Risk preference, risk perception as predictors of risky driving behaviors: the moderating effects of gender, age, and driving experience. Journal of Transportation Safety & Security, 15(5), 467–492. doi:10.1080/19439962.2022.2086953.
[58] Hu, L., Guo, G., Huang, J., Wu, X., & Chen, K. (2022). The Real-World Effects of Route Familiarity on Drivers’ Eye Fixations at Urban Intersections in Changsha, China. International Journal of Environmental Research and Public Health, 19(15), 9529. doi:10.3390/ijerph19159529.
[59] Colonna, P., Berloco, N., Intini, P., & Ranieri, V. (2015). Route Familiarity in Road Safety: Speed Choice and Risk Perception Based on a On-Road Study. Transportation Research Board 94th Annual Meeting, 11–15 January, 2015, Wahington, United States.
[60] Wen, H., & Xue, G. (2020). Exploring the relationships between single-vehicle traffic accident and driver’s route familiarity on the mountainous highways. Cognition, Technology & Work, 22(4), 815–824. doi:10.1007/s10111-019-00603-1.
[61] Harms, I. M., & Brookhuis, K. A. (2016). Dynamic traffic management on a familiar road: Failing to detect changes in variable speed limits. Transportation Research Part F: Traffic Psychology and Behaviour, 38, 37–46. doi:10.1016/j.trf.2016.01.005.
[62] Martens, M. H. (2018). The failure to respond to changes in the road environment: Does road familiarity play a role? Transportation Research Part F: Traffic Psychology and Behaviour, 57, 23–35. doi:10.1016/j.trf.2017.08.003.
[63] Seeherman, J., & Skabardonis, A. (2013). Rethinking the driver population factor. Transportation Research Record, 2395, 103–110. doi:10.3141/2395-12.
[64] Yanko, M. R., & Spalek, T. M. (2013). Route familiarity breeds inattention: A driving simulator study. Accident Analysis & Prevention, 57, 80–86. doi:10.1016/j.aap.2013.04.003.
[65] Intini, P., Berloco, N., Colonna, P., Ranieri, V., & Ryeng, E. (2018). Exploring the relationships between drivers’ familiarity and two-lane rural road accidents. A multi-level study. Accident Analysis & Prevention, 111, 280–296. doi:10.1016/j.aap.2017.11.013.
[66] Harms, I. M., Burdett, B. R. D., & Charlton, S. G. (2021). The role of route familiarity in traffic participants’ behaviour and transport psychology research: A systematic review. Transportation Research Interdisciplinary Perspectives, 9. doi:10.1016/j.trip.2021.100331.
[67] Ali, M., Haidar, N., Ali, M. M., & Maryam, A. (2011). Determinants of Seat Belt Use Among Drivers in Sabzevar, Iran: A Comparison of Theory of Planned Behavior and Health Belief Model. Traffic Injury Prevention, 12(1), 104–109. doi:10.1080/15389588.2010.535227.
[68] Delhomme, P., & Gheorghiu, A. (2021). Perceived stress, mental health, organizational factors, and self-reported risky driving behaviors among truck drivers circulating in France. Journal of Safety Research, 79, 341–351. doi:10.1016/j.jsr.2021.10.001.
[69] Amoadu, M., Ansah, E. W., & Sarfo, J. O. (2023). Psychosocial work factors, road traffic accidents and risky driving behaviours in low-and middle-income countries: A scoping review. IATSS Research, 47(2), 240–250. doi:10.1016/j.iatssr.2023.03.005.
[70] Duarte Soliani, R., Vinicius Brito Lopes, A., Santiago, F., da Silva, L. B., Emekwuru, N., & Carolina Lorena, A. (2025). Risk of crashes among self-employed truck drivers: Prevalence evaluation using fatigue data and machine learning prediction models. Journal of Safety Research, 92, 68–80. doi:10.1016/j.jsr.2024.11.002.
[71] Şimşekoǧlu, Ö., Nordfjærn, T., Zavareh, M. F., Hezaveh, A. M., Mamdoohi, A. R., & Rundmo, T. (2013). Risk perceptions, fatalism and driver behaviors in Turkey and Iran. Safety Science, 59, 187–192. doi:10.1016/j.ssci.2013.05.014.
[72] Himawan, A. (2023). Factors Influencing Traffic Compliance. International Journal of Social and Management Studies, 4(3), 33-41.
[73] Åberg, L. (1998). Traffic rules and traffic safety. Safety Science, 29(3), 205–215. doi:10.1016/S0925-7535(98)00023-X.
[74] Škerlič, S., Muha, R., & Erčulj, V. (2024). Safety Behaviour of Heavy Truck Drivers in International Transport. TRANSBALTICA XIV: Transportation Science and Technology. TRANSBALTICA 2023. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham, Switzerland. doi:10.1007/978-3-031-52652-7_46.
[75] Taiwo, O. A., Mahmud, N., Hassan, S. A., & Mohsin, R. Bin. (2024). Influence of commercial drivers’ risky behavior on accident involvement: moderating effect of positive driving behavior. Journal of Engineering and Applied Science, 71(1), 68. doi:10.1186/s44147-024-00403-z.
[76] Okyere, P., Agyei-Baffour, P., Harris, M. J., Mock, C., Donkor, P., Yankson, I. K., & Owusu-Dabo, E. (2021). Predictors of Seat-Belt Use among Bus Passengers in Ghana: An Application of the Theory of Planned Behaviour and Health Belief Model. Journal of Community Health, 46(5), 992–999. doi:10.1007/s10900-021-00980-7.
[77] Hasan, A. S., Nayeem, M. A., Patel, D., Al-Sheikh, O., & Jalayer, M. (2025). Seat belt compliance behavior of drivers and passengers: A review of data collection, analysis, contributing factors and safety countermeasures. Accident Analysis & Prevention, 214. doi:10.1016/j.aap.2025.107968.
[78] Farooq, M. U., Ahmed, A., & Saeed, T. U. (2021). A statistical analysis of the correlates of compliance and defiance of seatbelt use. Transportation Research Part F: Traffic Psychology and Behaviour, 77, 117–128. doi:10.1016/j.trf.2020.12.008.
[79] Anund, A., Forward, S., & Sjörs Dahlman, A. (2023). Seat belt usage in buses – An observation study of usage and travellers’ perspectives. Accident Analysis & Prevention, 190, 107138. doi:10.1016/j.aap.2023.107138.
[80] Lee, C., Saxena, M., Lin, P. S., Gonzalez-Velez, E., & Rouse, J. W. (2010). Aggressive driving and safety campaigns: Lessons learned from better driver campaign in Florida. Transportation Research Record, 2182, 79–87. doi:10.3141/2182-11.
[81] Adamos, G., Nathanail, E. G., & Kapetanopoulou, P. (2013). Do Road Safety Communication Campaigns Work? Transportation Research Record: Journal of the Transportation Research Board, 2364(1), 62–70. doi:10.3141/2364-08.
[82] Berg, H.-Y. (2006). Reducing crashes and injuries among young drivers: what kind of prevention should we be focusing on? Injury Prevention, 12(Suppl 1), i15–i18. doi:10.1136/ip.2006.012062.
[83] Faus, M., Alonso, F., Fernández, C., & Useche, S. A. (2021). Are traffic announcements really effective? A systematic review of evaluations of crash-prevention communication campaigns. Safety, 7(4), 66. doi:10.3390/SAFETY7040066.
[84] Juhana, T., Yuliana, H., Hendrawan, ., Iskandar, ., & Musashi, Y. (2024). Comparative Analysis of ARIMA, Prophet, and Glmnet for Long Term Evolution (LTE) Base Station Traffic Forecasting. Emerging Science Journal, 8(6), 2197–2217. doi:10.28991/ESJ-2024-08-06-04.
[85] Vanlaar, W., Simpson, H., Mayhew, D., & Robertson, R. (2008). Fatigued and drowsy driving: A survey of attitudes, opinions and behaviors. Journal of Safety Research, 39(3), 303–309. doi:10.1016/j.jsr.2007.12.007.
[86] Hong, J., Park, J., Lee, G., & Park, D. (2019). Endogenous commercial driver’s traffic violations and freight truck-involved crashes on mainlines of expressway. Accident Analysis & Prevention, 131, 327–335. doi:10.1016/j.aap.2019.07.026.
[87] Machin, M. A., & De Souza, J. M. D. (2004). Predicting health outcomes and safety behaviour in taxi drivers. Transportation Research Part F: Traffic Psychology and Behaviour, 7(4–5), 257–270. doi:10.1016/j.trf.2004.09.004.
[88] Glendon, A. I., & Walker, B. L. (2013). Can anti-speeding messages based on protection motivation theory influence reported speeding intentions? Accident Analysis & Prevention, 57, 67–79. doi:10.1016/j.aap.2013.04.004.
[89] de Vries, J., de Koster, R., Rijsdijk, S., & Roy, D. (2017). Determinants of safe and productive truck driving: Empirical evidence from long-haul cargo transport. Transportation Research Part E: Logistics and Transportation Review, 97, 113–131. doi:10.1016/j.tre.2016.11.003.
[90] Azmi, M., Misdi, N.S., Johar, M., Octora, Y. (2024). Systematic Review of Road Traffic Regulation Compliance. Innovative Technologies for Enhancing Experiences and Engagement. Springer Briefs in Applied Sciences and Technology. Springer, Cham, Switzerland. doi:10.1007/978-3-031-55558-9_1.
[91] Turing, A. M. (1950). I.—Computing Machinery And Intelligence. Mind, LIX(236), 433–460. doi:10.1093/mind/lix.236.433.
[92] Fitts, P.M. & Posner, M.I. (1967) Human Performance. Brooks/Cole, Belmont, United States.
[93] Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 55-81. doi:10.1016/0010-0285(73)90004-2.
[94] De Groot, A. (1964). The chess player's thinking: an experimental psychological experiment. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands.
[95] Alonso, F., Faus, M., Fernández, C., & Useche, S. A. (2021). “Where Have I Heard It?” Assessing the Recall of Traffic Safety Campaigns in the Dominican Republic. Energies, 14(18), 5792. doi:10.3390/en14185792.
[96] Nathanail, E., & Adamos, G. (2013). Road safety communication campaigns: Research designs and behavioral modeling. Transportation Research Part F: Traffic Psychology and Behaviour, 18, 107–122. doi:10.1016/j.trf.2012.12.003.
[97] Kasmaei, P., Amin Shokravi, F., Hidarnia, A., Hajizadeh, E., Atrkar-Roushan, Z., Karimzadeh Shirazi, K., & Montazeri, A. (2014). Brushing behavior among young adolescents: Does perceived severity matter. BMC Public Health, 14(1), 8. doi:10.1186/1471-2458-14-8.
[98] Philip, P., Taillard, J., Klein, E., Sagaspe, P., Charles, A., Davies, W. L., Guilleminault, C., & Bioulac, B. (2003). Effect of fatigue on performance measured by a driving simulator in automobile drivers. Journal of Psychosomatic Research, 55(3), 197–200. doi:10.1016/S0022-3999(02)00496-8.
[99] Yennu, S., Urbauer, D. L., & Bruera, E. (2012). Factors associated with the severity and improvement of fatigue in patients with advanced cancer presenting to an outpatient palliative care clinic. BMC Palliative Care, 11, 1–8. doi:10.1186/1472-684X-11-16.
[100] Gastaldi, M., Rossi, R., & Gecchele, G. (2014). Effects of Driver Task-related Fatigue on Driving Performance. Procedia - Social and Behavioral Sciences, 111, 955–964. doi:10.1016/j.sbspro.2014.01.130.
[101] Fort, E., Chiron, M., Davezies, P., Bergeret, A., & Charbotel, B. (2013). Driving Behaviors and On-Duty Road Accidents: A French Case-Control Study. Traffic Injury Prevention, 14(4), 353–359. doi:10.1080/15389588.2012.719091.
[102] Pourabdian, S., Lotfi, S., Yazdanirad, S., Golshiri, P., & Hassanzadeh, A. (2020). Evaluation of the effect of fatigue on the coping behavior of international truck drivers. BMC Psychology, 8(1), 70. doi:10.1186/s40359-020-00440-2.
[103] Blackwell, R., Zanker, S., & Davidson, J. (2017). Road safety policy and practice: Understanding low-level speeders to increase speed compliance via road safety campaigns. Journal of the Australasian College of Road Safety, 28(2), 47-55.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














