Bio-Based Modification of Natural Rubber-Modified Asphalt Using Hard Resin from Yang
Downloads
This study investigates the potential of hard resin derived from the Yang tree (HY), a renewable bio-based byproduct, as a performance-enhancing additive in natural rubber-modified asphalt (NRMA). HY-modified binders (HYMA) containing 3%, 7%, and 15% HY by weight were evaluated through a multi-scale experimental program, including physical, rheological, thermal, chemical, and mechanical tests. Standard binder characterizations (penetration, ductility, softening point, viscosity), spectroscopic analyses (FT-IR, NMR), microstructural observations (ESEM, XRD), thermal profiling (DSC), and performance assessments (DSR, Marshall) were conducted. The results demonstrated that HY improved binder properties at optimal concentration by introducing additional hydrocarbon structures without chemical cross-linking. HYMA3 achieved the most favorable balance of stiffness, flexibility, and compaction efficiency, whereas higher HY contents (≥7%) impaired structural integrity and deformation resistance. Microstructural and thermal evidence confirmed surface modifications and altered thermal transitions, which influenced viscoelastic response. These findings provide new insights into bio-resin–asphalt interactions and establish the viability of HY as a sustainable alternative to synthetic polymer modifiers. Beyond performance improvement, HY promotes circular construction by transforming agricultural byproducts into functional pavement materials, supporting the development of climate-adaptive infrastructure.
Downloads
[1] Liu, Y., Su, P., Li, M., You, Z., & Zhao, M. (2020). Review on evolution and evaluation of asphalt pavement structures and materials. Journal of Traffic and Transportation Engineering (English Edition), 7(5), 573–599. doi:10.1016/j.jtte.2020.05.003.
[2] Zheng, D., Qian, Z., Liu, Y., & Liu, C. (2018). Prediction and sensitivity analysis of long-term skid resistance of epoxy asphalt mixture based on GA-BP neural network. Construction and Building Materials, 158, 614–623. doi:10.1016/j.conbuildmat.2017.10.056.
[3] Zhu, S., Ji, X., Yuan, H., Li, H., & Xu, X. (2023). Long-term skid resistance and prediction model of asphalt pavement by accelerated pavement testing. Construction and Building Materials, 375, 131004. doi:10.1016/j.conbuildmat.2023.131004.
[4] Azahar, N. B. M., Hassan, N. B. A., Jaya, R. P., Kadir, M. A. B. A., Yunus, N. Z. B. M., & Mahmud, M. Z. H. (2016). An overview on natural rubber application for asphalt modification. International Journal of Agriculture, Forestry and Plantation, 2, 212–218.
[5] Cheriet, F., Soudani, K., & Haddadi, S. (2015). Influence of Natural Rubber on Creep Behavior of Bituminous Concrete. Procedia - Social and Behavioral Sciences, 195, 2769–2776. doi:10.1016/j.sbspro.2015.06.391.
[6] Lo Presti, D. (2013). Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review. Construction and Building Materials, 49, 863–881. doi:10.1016/j.conbuildmat.2013.09.007.
[7] Poovaneshvaran, S., Mohd Hasan, M. R., & Putra Jaya, R. (2020). Impacts of recycled crumb rubber powder and natural rubber latex on the modified asphalt rheological behaviour, bonding, and resistance to shear. Construction and Building Materials, 234, 117357. doi:10.1016/j.conbuildmat.2019.1173577.
[8] Rodríguez-Fernández, I., Tarpoudi Baheri, F., Cavalli, M. C., Poulikakos, L. D., & Bueno, M. (2020). Microstructure analysis and mechanical performance of crumb rubber modified asphalt concrete using the dry process. Construction and Building Materials, 259, 119662. doi:10.1016/j.conbuildmat.2020.119662.
[9] Gao, J., Wang, H., You, Z., Hasan, M. R. M., Lei, Y., & Irfan, M. (2018). Rheological behavior and sensitivity of wood-derived bio-oil modified asphalt binders. Applied Sciences (Switzerland), 8(6). doi:10.3390/app8060919.
[10] Alzgool, H. A., Shawashreh, A. M., Albtoosh, L. A., & Abusamra, B. A. (2024). Experimental investigations: Reinforced Concrete Beams Bending Strength with Brine Wastewater in Short Age. Civil Engineering Journal, 10(1), 159–170. doi:10.28991/CEJ-2024-010-01-010.
[11] Rahmawati, C., Aisyah, S., Sanusi, Iqbal, Maulana, M. M., Erdiwansyah, & Ahmad, J. (2024). Artificial Intelligence Models for Predicting the Compressive Strength of Geopolymer Cements. Civil Engineering Journal, 10, 37–50. doi:10.28991/CEJ-SP2024-010-03.
[12] Sani, A., Mohd Hasan, M. R., Shariff, K. A., Jamshidi, A., Ibrahim, A. H., & Poovaneshvaran, S. (2020). Engineering and microscopic characteristics of natural rubber latex modified binders incorporating silane additive. International Journal of Pavement Engineering, 21(14), 1874–1883. doi:10.1080/10298436.2019.1573319.
[13] Saowapark, W., Jubsilp, C., & Rimdusit, S. (2017). Natural rubber latex-modified asphalts for pavement application: effects of phosphoric acid and sulphur addition. Road Materials and Pavement Design, 20(1), 211-224. doi:10.1080/14680629.2017.1378117.
[14] Ansari, A. H., Jakarni, F. M., Muniandy, R., Hassim, S., & Elahi, Z. (2021). Natural rubber as a renewable and sustainable bio-modifier for pavement applications: A review. Journal of Cleaner Production, 289. doi:10.1016/j.jclepro.2020.125727.
[15] Jitsangiam, P., Nusit, K., Phenrat, T., Kumlai, S., & Pra-ai, S. (2021). An examination of natural rubber modified asphalt: Effects of rubber latex contents based on macro- and micro-observation analyses. Construction and Building Materials, 289, 123158. doi:10.1016/j.conbuildmat.2021.123158.
[16] Wititanapanit, J., Carvajal-Munoz, J. S., & Airey, G. (2021). Performance-related and rheological characterisation of natural rubber modified bitumen. Construction and Building Materials, 268, 121058. doi:10.1016/j.conbuildmat.2020.121058.
[17] Gong, J., Han, X., Su, W., Xi, Z., Cai, J., Wang, Q., Li, J., & Xie, H. (2020). Laboratory evaluation of warm-mix epoxy SBS modified asphalt binders containing Sasobit. Journal of Building Engineering, 32, 101550. doi:10.1016/j.jobe.2020.101550.
[18] Hazoor Ansari, A., Jakarni, F. M., Muniandy, R., Hassim, S., Elahi, Z., & Meftah Ben Zair, M. (2022). Effect of cup lump rubber as a sustainable bio-modifier on the properties of bitumen incorporating polyphosphoric acid. Construction and Building Materials, 323, 126505. doi:10.1016/j.conbuildmat.2022.126505.
[19] Zahoor, M., Nizamuddin, S., Madapusi, S., & Giustozzi, F. (2021). Sustainable asphalt rejuvenation using waste cooking oil: A comprehensive review. Journal of Cleaner Production, 278. doi:10.1016/j.jclepro.2020.123304.
[20] Zargar, M., Ahmadinia, E., Asli, H., & Karim, M. R. (2012). Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen. Journal of Hazardous Materials, 233–234, 254–258. doi:10.1016/j.jhazmat.2012.06.021.
[21] Azahar, W. N. A. W., Jaya, R. P., Hainin, M. R., Bujang, M., & Ngadi, N. (2017). Mechanical performance of asphaltic concrete incorporating untreated and treated waste cooking oil. Construction and Building Materials, 150, 653–663. doi:10.1016/j.conbuildmat.2017.06.048.
[22] Ingrassia, L. P., Lu, X., Ferrotti, G., & Canestrari, F. (2019). Chemical and rheological investigation on the short- and long-term aging properties of bio-binders for road pavements. Construction and Building Materials, 217, 518–529. doi:10.1016/j.conbuildmat.2019.05.103.
[23] Zhang, R., Ji, J., You, Z., & Wang, H. (2020). Modification Mechanism of Using Waste Wood–Based Bio-Oil to Modify Petroleum Asphalt. Journal of Materials in Civil Engineering, 32(12), 625–634. doi:10.1061/(asce)mt.1943-5533.0003464.
[24] Hariadi, D., Saleh, S. M., Anwar Yamin, R., & Aprilia, S. (2021). Utilization of LDPE plastic waste on the quality of pyrolysis oil as an asphalt solvent alternative. Thermal Science and Engineering Progress, 23. doi:10.1016/j.tsep.2021.100872.
[25] Kumar, A., & Choudhary, R. (2024). Multiscale evaluation of aging susceptibility of asphalt binders modified with recycled rubber and plastic pyrolytic oil composites. Construction and Building Materials, 440, 137473. doi:10.1016/j.conbuildmat.2024.137473.
[26] Somé, S. C., Pavoine, A., & Chailleux, E. (2016). Evaluation of the potential use of waste sunflower and rapeseed oils-modified natural bitumen as binders for asphalt pavement design. International Journal of Pavement Research and Technology, 9(5), 368–375. doi:10.1016/j.ijprt.2016.09.001.
[27] Zhang, R., Shi, Q., Hu, P., Ji, J., & Suo, Z. (2023). Influence of castor oil-based bio-oil on the properties and microstructure of asphalt binder. Construction and Building Materials, 408, 133564. doi:10.1016/j.conbuildmat.2023.133564.
[28] Ding, Y., Shan, B., Cao, X., Liu, Y., Huang, M., & Tang, B. (2021). Development of bio oil and bio asphalt by hydrothermal liquefaction using lignocellulose. Journal of Cleaner Production, 288, 125586. doi:10.1016/j.jclepro.2020.125586.
[29] Rohayzi, N. F., Katman, H. Y. B., Ibrahim, M. R., Norhisham, S., & Rahman, N. A. (2023). Potential Additives in Natural Rubber-Modified Bitumen: A Review. Polymers, 15(8), 1951. doi:10.3390/polym15081951.
[30] Zhao, X., Li, F., Zhang, X., Cao, J., & Wang, X. (2023). Rheological properties and viscosity reduction mechanism of aromatic/naphthenic oil pre-swelling crumb rubber modified asphalt. Construction and Building Materials, 398, 132545. doi:10.1016/j.conbuildmat.2023.132545.
[31] Zhou, T., Wan, S., & Dong, Z. (2024). Changes in rheological and low-temperature characteristics of rubberized asphalt containing castor-based bio-oil under thermal-oxidative exposure. Construction and Building Materials, 411. doi:10.1016/j.conbuildmat.2023.134503.
[32] Dong, Z. jiao, Zhou, T., Luan, H., Williams, R. C., Wang, P., & Leng, Z. (2019). Composite modification mechanism of blended bio-asphalt combining styrene-butadiene-styrene with crumb rubber: A sustainable and environmental-friendly solution for wastes. Journal of Cleaner Production, 214, 593–605. doi:10.1016/j.jclepro.2019.01.004.
[33] Ju, Z., Ge, D., Wu, Z., Xue, Y., Lv, S., Li, Y., & Fan, X. (2022). The performance evaluation of high content bio-asphalt modified with polyphosphoric acid. Construction and Building Materials, 361. doi:10.1016/j.conbuildmat.2022.129593.
[34] Zhou, J., Dong, Z., Cao, L., Li, L., Yu, Y., Sun, Z., Zhou, T., & Chen, Z. (2024). Rheological evaluation of paving asphalt binder containing bio-oil from rice straw pyrolysis. Case Studies in Construction Materials, 20. doi:10.1016/j.cscm.2024.e03202.
[35] Kumar, A., & Choudhary, R. (2024). Effect of microwave pretreatment on characteristics of asphalt binders modified with scrap non-tire automotive rubber and waste derived pyrolytic oils after prolonged thermal storage. Construction and Building Materials, 419. doi:10.1016/j.conbuildmat.2024.135558.
[36] Poojeera, S., Benjapiyaporn, C., Intravised, K., Katekaew, S., Senawong, K., & Suiuay, C. (2020). Performance and emission characteristics of the diesel engine fueled by Yang oleoresin blended diesel fuel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 16318–16335. doi:10.1080/15567036.2020.1817183.
[37] Suiuay, C., Sudajan, S., Katekaew, S., Senawong, K., & Laloon, K. (2019). Production of gasoline-like-fuel and diesel-like-fuel from hard-resin of Yang (Dipterocarpus alatus) using a fast pyrolysis process. Energy, 187, 115967. doi:10.1016/j.energy.2019.115967.
[38] Roschat, W., Phewphong, S., Inthachai, S., Donpamee, K., Phudeetip, N., Leelatam, T., Moonsin, P., Katekaew, S., Namwongsa, K., Yoosuk, B., Janetaisong, P., & Promarak, V. (2024). A highly efficient and cost-effective liquid biofuel for agricultural diesel engines from ternary blending of distilled Yang-Na (Dipterocarpus alatus) oil, waste cooking oil biodiesel, and petroleum diesel oil. Renewable Energy Focus, 48, 100540. doi:10.1016/j.ref.2024.100540.
[39] Katekaew, S., Suiuay, C., Senawong, K., Seithtanabutara, V., Intravised, K., & Laloon, K. (2021). Optimization of performance and exhaust emissions of single-cylinder diesel engines fueled by blending diesel-like fuel from Yang-hard resin with waste cooking oil biodiesel via response surface methodology. Fuel, 304, 121434. doi:10.1016/j.fuel.2021.121434.
[40] Sakkampang, C., Kunanon, K., Suwunnasopha, P., & Poojeera, S. (2023). Performance, exhaust emission, and wear behavior of a direct-injection engine using biodiesel from Yang-Na (Dipterocarpus Alatus) oleoresins. Case Studies in Chemical and Environmental Engineering, 7, 100328. doi:10.1016/j.cscee.2023.100328.
[41] Suiuay, C., Laloon, K., Katekaew, S., Senawong, K., Noisuwan, P., & Sudajan, S. (2020). Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions. Renewable Energy, 153, 634–645. doi:10.1016/j.renene.2020.02.036.
[42] Daodee, S., Monthakantirat, O., Ruengwinitwong, K., Gatenakorn, K., Maneenet, J., Khamphukdee, C., Sekeroglu, N., Chulikhit, Y., & Kijjoa, A. (2019). Effects of the Ethanol Extract of Dipterocarpus alatus Leaf on the Unpredictable Chronic Mild Stress-Induced Depression in ICR Mice and Its Possible Mechanism of Action. Molecules, 24(18), 3396. doi:10.3390/molecules24183396.
[43] Puthongking, P., Yongram, C., Katekaew, S., Sungthong, B., & Weerapreeyakul, N. (2022). Dipterocarpol in Oleoresin of Dipterocarpus alatus Attributed to Cytotoxicity and Apoptosis-Inducing Effect. Molecules, 27(10), 3187. doi:10.3390/molecules27103187.
[44] TIS 851-2018. (2018). Asphalt cement for use in pavement construction. Thai Industrial Standard Institute, Bangkok, Thailand. (In Thai).
[45] DH-SP 409-2013. (2013). Specification for Natural Rubber Modified Asphalt. Department of Highways, Bangkok, Thailand. (In Thai).
[46] ASTM D5/D5M-13. (2019). Standard Test Method for Penetration of Bituminous Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0005_D0005M-13.
[47] ASTM D113-17. (2023). Standard Test Method for Ductility of Asphalt Materials. ASTM International, Pennsylvania, United States. doi:10.1520/D0113-17.
[48] ASTM D36-06. (2010). Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International, Pennsylvania, United States. doi:10.1520/D0036-06.
[49] ASTM D4402/D4402M-23. (2023). Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM International, Pennsylvania, United States. doi:10.1520/D4402_D4402M-23.
[50] ASTM D7175-23. (1995). Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer. ASTM International, Pennsylvania, United States. doi:10.1520/D7175-23.
[51] ASTM D6927-22. (2022). Standard Test Method for Marshall Stability and Flow of Asphalt Mixtures. ASTM International, Pennsylvania, United States. doi:10.1520/D6927-22.
[52] DH-S 408/2532. (1989). Asphalt concrete or Hot-Mix asphalt. Department of Highways, Bangkok, Thailand. (In Thai).
[53] Tuntiworawit, N., Lavansiri, D., & Phromsorn, C. (2005). The Modification of Asphalt with Natural Rubber Latex. Proceedings of the Eastern Asia Society for Transportation Studies, 5, 679–694.
[54] Al-Mansob, R. A., Ismail, A., Alduri, A. N., Azhari, C. H., Karim, M. R., & Yusoff, N. I. M. (2014). Physical and rheological properties of epoxidized natural rubber modified bitumens. Construction and Building Materials, 63, 242–248. doi:10.1016/j.conbuildmat.2014.04.026.
[55] Siddiqui, M. N., Ali, M. F., & Shirokoff, J. (2002). Use of X-ray diffraction in assessing the aging pattern of asphalt fractions. Fuel, 81(1), 51–58. doi:10.1016/S0016-2361(01)00116-8.
[56] Phetcharaburanin, J., Deewai, S., Kulthawatsiri, T., Moolpia, K., Suksawat, M., Promraksa, B., Klanrit, P., Namwat, N., Loilome, W., Poopasit, K., Katekaew, S., & Phetcharaburanin, P. (2020). 1H NMR metabolic phenotyping of Dipterocarpus alatus as a novel tool for age and growth determination. PLOS ONE, 15(12), e0243432. doi:10.1371/journal.pone.0243432.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















