GPR-Driven Geomechanical Modeling and Drill-Blast Optimization for Enhanced Efficiency in Open-Pit Gold Mining
Downloads
This study seeks to raise the operational efficiency and economic return of the Vasilkovskoye open-pit gold mine by integrating real-time ground-penetrating-radar (GPR) monitoring, geomechanical modeling, and digital optimization of drilling-and-blasting parameters. Continuous GPR scanning identified hazardous fracture zones that were subsequently characterized in DIPS and RS2 to model slope stability, while ShotPlus-based blast simulations and OrePro 3D displacement modeling guided the redesign of hole spacing, charge distribution, and delay timing. Fragmentation quality was verified with high-resolution photogrammetry and correlated to blast design through statistical analysis; a comparative techno-economic assessment quantified cost and dilution differentials between conventional and optimized schemes. The integrated workflow established a robust predictive link between blast geometry and fragment size, reducing oversize generation by 17% and ore dilution by 9%, while increasing gold grade in mill feed from 0.84 g t⁻¹ to 0.94 g t⁻¹. GPR-informed hazard mapping eliminated unplanned wall failures, and the revised pattern lowered specific explosive consumption without compromising fragmentation, cutting total unit costs by 8%. Unlike previous studies that treat slope stability and blasting as separate tasks, this study couples deformation dynamics with blast design in a single digital loop, offering a transferable framework for automation-ready, risk-aware mine planning at complex geological sites.
Downloads
[1] Mcevoy, D. (2025). What’s the latest with the gold race rally? MoneyWeek, London, United Kingdom. Available online: https://moneyweek.com/investments/commodities/gold/gold-price?utm_source=chatgpt.com (accessed on November 2025).
[2] Perincek, O., Loxton, R., Kulkarni, S., & Arthur, D. (2025). Drill Pattern Optimisation for Large Complex Blasts to Improve Fragmentation and Dig Efficiency. Mathematical Geosciences, 57(3), 577-599. doi:10.1007/s11004-024-10174-1.
[3] Yu, K., Lin, P., Chitombo, G., Ma, L., & Peng, C. (2024). Study on the optimization of blasting parameters and blastholes charging structure for broken orebody. Tunnelling and Underground Space Technology, 152, 105948. doi:10.1016/j.tust.2024.105948.
[4] Serdaliyev, Y., Bakhramov, B., & Alip, A. (2025). Improvement of blasting technology at gold-ore mining enterprises using contour blasting. Mining of Mineral Deposits, 19(2), 83–94. doi:10.33271/mining19.02.083.
[5] Kgarume, T., van Schoor, M., & Nontso, Z. (2019). The use of 3D ground penetrating radar to mitigate the risk associated with falls of ground in Bushveld Complex platinum mines. Journal of the Southern African Institute of Mining and Metallurgy, 119(11), 973–982. doi:10.17159/2411-9717/603/2019.
[6] Economou, N., Bano, M., & Ortega-ramirez, J. (2021). Delineation of fractures using a 2d GPR processing strategy for 3d imaging: Weak zones within carbonates at the archaeological site of xochicalco in Mexico. Applied Sciences (Switzerland), 11(13), 5893. doi:10.3390/app11135893.
[7] Luo, G., Cao, Y., Xu, H., Yang, G., Wang, S., Huang, Y., & Bai, Z. (2021). Research on typical soil physical properties in a mining area: Feasibility of three-dimensional ground penetrating radar detection. Environmental Earth Sciences, 80(3), 92. doi:10.1007/s12665-021-09383-2.
[8] Manu E, Preko K, & Wemegah DD. (2013). Application of Ground Penetrating Radar in delineating zones of Gold Mineralization at the Subenso-North Concession of Newmont Ghana Gold Limited. International Journal of Scientific and Research Publications, 3(5), 1–11.
[9] Zhang, Q., Zhang, H., Wang, L., Li, Q., & Yu, H. (2024). Effect of structural characteristics on the stability of multi-weak rock slopes considering the spatial variability of geotechnical parameters. Scientific Reports, 14(1), 30618. doi:10.1038/s41598-024-82296-9.
[10] Ullah, S., Ren, G., Ge, Y., & Kinyua, E. M. (2025). Evaluation and Prediction of Blast-Induced Ground Vibration Using Gaussian Process Regression at Saindak Copper–Gold Open Pit Mine, Pakistan. Mining, Metallurgy & Exploration, 42(1), 155–170. doi:10.1007/s42461-024-01159-z.
[11] Zvarivadza, T., Yi, C., Dineva, S., Onifade, M., Khandelwal, M., & Genc, B. (2025). Evaluating destress blasting for rock fracture and rockburst prediction in deep level hardrock mining. Journal of the Southern African Institute of Mining and Metallurgy, 125(6), 273–298. doi:10.17159/2411-9717/3685/2025.
[12] Li, Z. (2023). Rock mass characterization using ground penetrating radar (GPR), rotary-percussion drilling performance, and indentation test. Ph.D. Thesis, Memorial University of Newfoundland, St. John's, Canada.
[13] Arthur, C. K., Temeng, V. A., & Ziggah, Y. Y. (2020). Novel approach to predicting blast-induced ground vibration using Gaussian process regression. Engineering with Computers, 36(1), 29–42. doi:10.1007/s00366-018-0686-3.
[14] van Schoor, M., Nkosi, Z., Magweregwede, F., & Kgarume, T. (2022). Deep-Level Gold and Platinum Mining. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-031-09491-0.
[15] Rysbekov, K., Nurpeisova, M., Kassymkanova, K. K., Meirambek, G., Kyrgizbayeva, D., & Rakhimbayeva, D. (2025). Providing Stability of Quarry Slopes At Combined Mining of Mineral Deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2(2), 60–68. doi:10.33271/nvngu/2025-2/060.
[16] Wu, X., Zhu, D., Lu, H., & Li, L. (2024). Simulation research on blasting of an open pit mine slope considering elevation conditions and slope shape factors. Frontiers in Earth Science, 12, 1417895. doi:10.3389/feart.2024.1417895.
[17] Kucewicz, M., Łukasz, M., Baranowski, P., Małachowski, J., Fuławka, K., Mertuszka, P., & Szumny, M. (2024). Numerical modeling of blast-induced rock fragmentation in deep mining with 3D and 2D FEM method approaches. Journal of Rock Mechanics and Geotechnical Engineering, 16(11), 4532–4553. doi:10.1016/j.jrmge.2024.01.017.
[18] Ming, J., Pan, Y., Xie, J., Li, Z., & Guo, R. (2024). Study on the law of ore dilution and loss and control strategies under brow line failure in sublevel caving mining. Scientific Reports, 14(1), 26195. doi:10.1038/s41598-024-77064-8.
[19] Hmoud, S., & Kumral, M. (2025). Risk-Based Optimization of Post-Blast Dig-Limits Incorporating Blast Movement and Grade Uncertainties with Multiple Destinations in Open-Pit Mines. Natural Resources Research, 34(1), 193–214. doi:10.1007/s11053-024-10428-z.
[20] Orient Exploration Team LLP. (2022). Report on Mineral Resources and Mineral Reserves for Open Pit Mining of the Vasilkovskoye Gold Deposit in accordance with KAZRC Standards. Orient Petroleum Inc., Astana, Kazakhstan.
[21] Torbica, S., & Lapcevic, V. (2014). Rock breakage by explosives. European International Journal of Science and Technology, 3(2), 96-104.
[22] Al-Mistarehi, B., Imam, R., Al-Shawabkah, M. M., Shtayat, A., & Al-Omari, A. (2024). Assessing the Effect of Geometric Design and Land Use on Roundabouts Using Video Camera. Civil Engineering Journal, 10(11), 3626–3639. doi:10.28991/CEJ-2024-010-11-012.
[23] Almenov, T., Zhanakova, R., Sarybayev, M., & Shabaz, D. M. (2025). A Novel Approach to Selecting Rational Supports for Underground Mining Workings. Civil Engineering Journal (Iran), 11(3), 1217–1241. doi:10.28991/CEJ-2025-011-03-022.
[24] Zhou, J., Gao, S., Luo, P., Fan, J., & Zhao, C. (2024). Optimization of Blasting Parameters Considering Both Vibration Reduction and Profile Control: A Case Study in a Mountain Hard Rock Tunnel. Buildings, 14(5), 1421. doi:10.3390/buildings14051421.
[25] Kaiser, P. K., & McCreath, D. R. (1994). Rock mechanics considerations for drilled or bored excavations in hard rock. Tunnelling and Underground Space Technology, 9(4), 425–437. doi:10.1016/0886-7798(94)90101-5.
[26] Wang, R., & Elmo, D. (2024). Discrete Fracture Network (DFN) as an Effective Tool to Study the Scale Effects of Rock Quality Designation Measurements. Applied Sciences (Switzerland), 14(16), 7101. doi:10.3390/app14167101.
[27] Zaid, M., & Sadique, M. R. (2021). The response of rock tunnel when subjected to blast loading: Finite element analysis. Engineering Reports, 3(2). doi:10.1002/eng2.12293.
[28] Etemadifar, M., Shoaei, G., Javadi, M., & Hashemnejad, A. (2025). A Developed Computational Code to Build a 3D Fracture Network to Reduce the Uncertainty of Fracture Parameter Generation (A Case Study of the Emamzadeh Hashem Tunnel). Geosciences (Switzerland), 15(1), 6. doi:10.3390/geosciences15010006.
[29] Chen, N., Liu, Z. W., Xiao, H. L., & Li, L. H. (2025). UAV-Based Simulation of 3D Random Discontinuity Networks in Rock Slopes. Geotechnical and Geological Engineering, 43(1), 16. doi:10.1007/s10706-024-02997-w.
[30] Shields, L., Silva, J., Calnan, J., Maldonado, E., & Agioutantis, Z. (2025). Integrating Underground Blast Fragmentation Modeling for Sustainable Mine-to-Mill Optimization: A Focus on Blast Fragmentation and Energy Efficiency in Comminution Circuits. Rock Mechanics and Rock Engineering, 58(4), 4497–4508. doi:10.1007/s00603-024-04118-8.
[31] Zhao, Y., Hua, W., Chen, G., Liang, D., Liu, Z., & Liu, X. (2021). New method for estimating strike and dip based on structural expansion orientation for 3D geological modeling. Frontiers of Earth Science, 15(3), 676-691. doi:10.1007/s11707-021-0903-z.
[32] Hu, B., Zhang, Q., Li, S., Yu, H., Wang, X., & Wang, H. (2022). Application of Numerical Simulation Methods in Solving Complex Mining Engineering Problems in Dingxi Mine, China. Minerals, 12(2), 123. doi:10.3390/min12020123.
[33] Alipenhani, B., Amnieh, H. B., & Majdi, A. (2022). Physical model simulation of block caving in jointed rock mass. International Journal of Mining and Geo-Engineering, 56(4), 349–359. doi:10.22059/IJMGE.2022.339663.594953.
[34] Department of Mines, Industry Regulation and Safety. (2019). Ground control management in Western Australian mining operations–guideline. Department of Mines, Industry Regulation and Safety, East Perth, Australia. Available online: https://www.worksafe.wa.gov.au/system/files/documents/2025-02/MSH_GL_GroundControl.pdf (accessed on July 2025).
[35] Masoumi, I., Zabihi, B., & Masoumi, S. (2024). Optimizing Rock Fragmentation in Open-Pit Mines Through Fuzzy Intelligent Prediction Method. Mining Science, 31, 21–38. doi:10.37190/msc243102.
[36] Weir Motion Metrics. (2020). TruckMetrics and CrusherMetrics: Solutions for Optimizing Blasting Operations.Weir Motion Metrics, Vancouver, Canada.
[37] Motion Metrics. (2020). Introducing BeltMetrics™ Volume Monitoring. Motion Metrics, Vancouver, Canada. Available online: https://www.motionmetrics.com/introducing-beltmetrics-volume-monitoring/ (accessed on November 2025).
[38] Hong, Z., Tao, M., Zhao, M., Zhou, J., Yu, H., & Wu, C. (2023). Numerical modelling of rock fragmentation under high in-situ stresses and short-delay blast loading. Engineering Fracture Mechanics, 293, 109727. doi:10.1016/j.engfracmech.2023.109727.
[39] Aruna, M., Vardhan, H., Tripathi, A. K., Parida, S., Raja Sekhar Reddy, N. V., Sivalingam, K. M., Yingqiu, L., & Elumalai, P. V. (2025). Enhancing safety in surface mine blasting operations with IoT based ground vibration monitoring and prediction system integrated with machine learning. Scientific Reports, 15(1), 3999. doi:10.1038/s41598-025-86827-w.
[40] Yang, Q., Gao, Q., Jia, Y., Zhou, H., Gao, X., Jiang, W., & Ma, X. (2025). Application of Simulation Methods and Image Processing Techniques in Rock Blasting and Fragmentation Optimization. Applied Sciences (Switzerland), 15(6), 3365. doi:10.3390/app15063365.
[41] Deressa, G. W., & Choudhary, B. S. (2025). Evaluating Productivity in Opencast Mines: A Machine Learning Analysis of Drill-Blast and Surface Miner Operations. Natural Resources Research, 34(1), 215–251. doi:10.1007/s11053-024-10429-y.
[42] Abbaspour, H., Drebenstedt, C., Badroddin, M., & Maghaminik, A. (2018). Optimized design of drilling and blasting operations in open pit mines under technical and economic uncertainties by system dynamic modelling. International Journal of Mining Science and Technology, 28(6), 839–848. doi:10.1016/j.ijmst.2018.06.009.
[43] Karlsen, J., & Rigby, S. E. (2024). The role of AI in engineering: Towards rapid inverse blast analysis. Proceedings of The 4th International Conference on Structural Safety Under Fire & Blast Loading (CONFAB 2024), 9-10 September, 2024, London, United Kingdom.
[44] Eremenko, A. A., Konurin, A. I., Shtirts, V. A., & Volkov, A. V. (2024). Features of rock mass geodynamics during large-scale blasting in rockburst-hazardous iron ore mining. Gornyi Zhurnal, 1, 50–56. doi:10.17580/gzh.2024.01.08.
[45] Deressa, G. W., Choudhary, B. S., & Jilo, N. Z. (2025). Optimizing blast design and bench geometry for stability and productivity in open pit limestone mines using experimental and numerical approaches. Scientific Reports, 15(1), 5796. doi:10.1038/s41598-025-90242-6.
[46] Begalinov, A., Khomiakov, V., Serdaliyev, Y., Iskakov, Y., & Zhanbolatov, A. (2020). Formulation of methods reducing landslide phenomena and the collapse of career slopes during open-pit mining. E3S Web of Conferences, 168, 6. doi:10.1051/e3sconf/202016800006.
[47] Lu, Y., Jin, C., Wang, Q., Han, T., Zhang, J., & Chen, L. (2023). Numerical study on spatial distribution of blast-induced damage zone in open-pit slope. International Journal of Rock Mechanics and Mining Sciences, 163, 105328. doi:10.1016/j.ijrmms.2023.105328.
[48] Almenov, T., Begalinov, A., Serdaliev, E., Amanzholov, D., Zhaksybek, B., and Bakhramov B. (2015) Method of development of steeply falling vein deposits. (Kazakhstan Patent No. 30460). National Institute of Intellectual Property of the Republic of Kazakhstan, Korgalzhyn, Kazakhstan. Available online: https://kz.patents.su/4-ip30460-sposob-razrabotki-krutopadayushhih-zhilnyh-mestorozhdenijj.html (accessed on November 2025). (In Russian).
[49] Begalinov, A., Almenov, T., Zhanakova, R., & Bektur, B. (2020). Analysis of the stress deformed state of rocks around the haulage roadway of the beskempir field (Kazakhstan). Mining of Mineral Deposits, 14(3), 28–36. doi:10.33271/mining14.03.028.
[50] Zhang, Z. X., Sanchidrián, J. A., Ouchterlony, F., & Luukkanen, S. (2023). Reduction of Fragment Size from Mining to Mineral Processing: A Review. Rock Mechanics and Rock Engineering, 56(1), 747–778. doi:10.1007/s00603-022-03068-3.
[51] Borodin, A. A., Kabulova, E. G., & Polozhentsev, K. A. (2016). Video detection of problems in the melting of consumable electrodes in a vacuum arc furnace. Steel in Translation, 46(5), 322–324. doi:10.3103/S0967091216050041.
[52] Pospehov, G. B., Norova, L. P., & Izotova, V. A. (2024). Comparing the methods of grain size analysis of gypsum-containing sulfuric acid wastes neutralized with limestone. Sustainable Development of Mountain Territories, 16(4), 1729–1742. doi:10.21177/1998-4502-2024-16-4-1729-1742.
[53] Orica (2023). Blast Movement Modeling with OREPro 3D – Case Study: Touquoy Mine, St Barbara. Orica Technical Papers. Orica Ltd, Victoria, Australia. Available online: https://www.orica.com/ArticleDocuments/2605/5000109_Touquoy%20Mine %2C%20St%20Barbara%20Case%20Study.pdf.aspx (accessed on November 2025).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















