Statistical (SPSS) Models: Ultimate Uplift Capacity of Horizontal Square Anchor Plate
Downloads
This paper examines the relationship between ultimate capacity and vertical displacement for single anchors and line anchor groups (1×2), (1×3), (1×4), and (1×5), in relation to the number of anchors and the embedment depth. Studies addressing statistical analysis in this area are limited; therefore, it was considered appropriate to conduct a statistical investigation to support this field with analytical results and to provide a foundation for future research. The statistical analysis for the single anchor plate indicated that the correlation between ultimate capacity, number of anchors, and embedment depth was strong, with acceptable values of R and R² and a well-fitting mathematical model. In contrast, vertical displacement showed insufficient mathematical representation when analyzed against the number of anchors and embedment depth, as vertical displacement is influenced by additional factors such as loading duration (creep effects), soil unit weight, plate shape and dimensions, internal friction angle, and moisture content, rather than by ultimate capacity alone. When the number of anchor plates in a group exceeds three, the vertical displacement at system failure increases due to the reduced strength of the soil associated with larger anchor groups.
Downloads
[1] O’neill, M. P., O’loughlin, C. D., Watson, P. G., Gaudin, C., Palacios, M., Stubbs, J., & Kuo, M. (2023). Broadening the use of SEPLAs for floating wind applications - anchoring in non-clay soils. 9th International SUT Offshore Site Investigation Geotechnics Conference Proceedings “Innovative Geotechnologies for Energy Transition,” 1249–1255. doi:10.3723/SOIC4915.
[2] Cerfontaine, B., White, D., Kwa, K., Gourvenec, S., Knappett, J., & Brown, M. (2023). Anchor geotechnics for floating offshore wind: Current technologies and future innovations. Ocean Engineering, 279, 114327. doi:10.1016/j.oceaneng.2023.114327.
[3] Chow, S. H., Diambra, A., O’Loughlin, C. D., Gaudin, C., & Randolph, M. F. (2020). Consolidation effects on monotonic and cyclic capacity of plate anchors in sand. Geotechnique, 70(8), 720–731. doi:10.1680/jgeot.19.TI.017.
[4] Roy, A., Chow, S. H., Randolph, M. F., & O’loughlin, C. D. (2022). Consolidation effects on uplift capacity of shallow horizontal plate anchors in dilating sand. Geotechnique, 72(11), 957–973. doi:10.1680/jgeot.20.P.117.
[5] Cao, J., Audibert, J. M. E., Al-Khafaji, Z., Phillips, R., & Popescu, R. (2002, May). Numerical analysis of the behavior of suction caissons in clay. ISOPE International Ocean and Polar Engineering Conference (pp. ISOPE-I), 26-31 May, 2002, Kitakyushu, Japan.
[6] Mana, D. S. K., Gourvenec, S., & Randolph, M. F. (2014). Numerical modelling of seepage beneath skirted foundations subjected to vertical uplift. Computers and Geotechnics, 55, 150–157. doi:10.1016/j.compgeo.2013.08.007.
[7] Maitra, S., White, D., Chatterjee, S., & Choudhury, D. (2019). Numerical modelling of seepage and tension beneath plate anchors. Computers and Geotechnics, 108, 131–142. doi:10.1016/j.compgeo.2018.12.022.
[8] Maitra, S., Chatterjee, S., White, D., & Choudhury, D. (2022). Uplift resistance of buried pipelines: The contribution of seepage forces. Ocean Engineering, 250, 111037. doi:10.1016/j.oceaneng.2022.111037.
[9] Mors, H. (1959). The behaviour of mast foundations subjected to tensile forces. Bautechnik, 36(10), 367-378.
[10] Fujiwara, Y., Murakami, T., Fukuda, M., Takashima, M., & Nagaki, H. (2019). A Study on Tensile Force Management Method for Additional Ground Anchor Construction Implemented as a Deterioration Countermeasure. Journal of Japan Society of Civil Engineers, Ser. C (Geosphere Engineering), 75(1), 115-130. doi:10.2208/JOURNALOFJSCE.8.1_161.
[11] Park, B., Kim, W., Hwang, S., & Kwon, O. (2020). A study on the cut-slope maintenance according to anchor tension force. Journal of Engineering Geology, 30(4), 673–682. doi:10.9720/kseg.2020.4.673. (In Korean).
[12] Park, S. Y., Lee, S., Jung, J., & Cho, W. (2020). Evaluation of residual tensile load of field ground anchors based on long-term measurement. Journal of the Korean Geotechnical Society, 36(8), 35-47. doi:10.7843/kgs.2020.36.
[13] Sic Choi, T., Mann Yun, J., Seong Kim, Y., Kyong You, S., & Il Lee, K. (2021). Stability Evaluation of Anchors Using Lift-off Field Test. Journal of the Society of Disaster Information, 17(1), 128–142. doi:10.15683/kosdi.2021.3.31.128.
[14] Ovesen, N. K., & Strømann, H. (1972). Design method for vertical anchor slabs in sand. Performance of earth and earth-supported structures, American Society of Civil Engineers (ASCE), Reston, United States.
[15] Meyerhof, G. G. (1975). Uplift resistance of inclined anchors and piles. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12(7), 97. doi:10.1016/0148-9062(75)90476-3.
[16] Kame, G. S., Dewaikar, D. M., & Choudhury, D. (2012). Pullout Capacity of a Vertical Plate Anchor Embedded in Cohesion-less Soil. Earth Science Research, 1(1), 27–56. doi:10.5539/esr.v1n1p27.
[17] Jadid, R., Abedin, M. Z., Rafat Shahriar, A., & Uddin Arif, M. Z. (2018). Analytical Model for Pullout Capacity of a Vertical Concrete Anchor Block Embedded at Shallow Depth in Cohesionless Soil. International Journal of Geomechanics, 18(7), 6018017. doi:10.1061/(asce)gm.1943-5622.0001212.
[18] Shahriar, A. R., Islam, M. S., & Jadid, R. (2020). Ultimate Pullout Capacity of Vertical Anchors in Frictional Soils. International Journal of Geomechanics, 20(2), 4019153. doi:10.1061/(asce)gm.1943-5622.0001576.
[19] Hao, D., Chen, X., Chen, R., & Yuan, C. (2024). Numerical Investigation on Uplift Capacity and Failure Mode of Inclined Circular Plate/Helical Anchor in Sand. Volume 8: Offshore Geotechnics; Petroleum Technology. doi:10.1115/omae2024-134450.
[20] Hassan, M. M., Rahman, N., Rokonuzzaman, M. D., & Rahman, S. (2024). Effect of anchor geometry on uplift resistance of plate anchor in sloping terrain. Ocean Engineering, 292, 116498. doi:10.1016/j.oceaneng.2023.116498.
[21] Wang, J., Xia, H., Cai, H., & Hua, J. (2024). Study on the influence of anchor plate parameters on the bearing characteristics of the new large-diameter multi-plate soil anchor and creep property of anchor. Scientific Reports, 14(1), 28158. doi:10.1038/s41598-024-79783-4.
[22] Buragadda, V., Orekanti, E. R., Garu, V. Y., & Edagotti, P. K. (2024). Influence of Reinforcement Geometrical Parameters on Plate Anchor Uplift Capacity. Transportation Infrastructure Geotechnology, 11(4), 1828–1859. doi:10.1007/s40515-023-00351-w.
[23] Daibil, A. R., & Al-Saidi, A. A. H. (2025). The Soil-Anchors System Theories and Improvement: A Review Study. Journal of Engineering, 31(7), 167–197. doi:10.31026/j.eng.2025.07.10.
[24] Larnach, W. J., & Mcmullan, D. J. (1975). Paper 19 Behaviour of inclined groups of plate anchors in dry sand. Diaphragm Walls & Anchorages, 153–156, Emerald Publishing, Leeds, United Kingdom. doi:10.1680/dwaa.00056.0024.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















