Climate Change Impacts on Rainfall Variability and Adaptive Reservoir Operation in a Multi-Reservoir System
Downloads
Changes in rainfall patterns driven by climate change have altered the hydrological regime of river basins, creating substantial challenges for water resources management, particularly in the operation of the Batutegi cascade system comprising the Batutegi Dam, Way Sekampung Dam, Argoguroh Weir, Margatiga Dam and Jabung Weir. This study assesses the impacts of climate change on rainfall intensity, dependable flow, and water allocation modeling within the Sekampung River Basin. The analysis employed five rainfall datasets downscaled from the NASA Earth Exchange Downscaled Climate Projections at 30 arc-seconds (NEX-DCP30) and simulated using five CMIP6 models for both the historical period (1980–2014) and future projections (2024–2100). Results indicate that CMIP6 projections reproduce rainfall patterns reasonably well during January–February and May–July, but perform less consistently in March–April and October–November. Most models tend to overestimate the mean annual rainfall. Rainfall variability contributes to pronounced fluctuations in river discharge, particularly during the dry season. Dependable flows show marked changes, especially within the exceedance probability range of Q10% to Q100%. Although an overall increasing rainfall trend is observed, the system is still able to satisfy water demand under the 2023 operating rules, with potential deficits persisting during critical periods. Optimization modeling further demonstrates the necessity of adaptive reservoir operation rules under climate change, which could improve the reliability of meeting multisectoral demands to approximately 80%. These findings underscore the importance of incorporating climate model projections into watershed-based water resources management to strengthen resilience against extreme hydroclimatic variability.
Downloads
[1] IPCC. (2021). Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom. Available online https://www.ipcc.ch/report/ar6/wg1/ (accessed on September 2025).
[2] Song, F., Leung, L. R., Lu, J., Zhou, T., & Huang, P. (2023). Advances in understanding the changes of tropical rainfall annual cycle: a review. Environmental Research: Climate, 2(4), 42001. doi:10.1088/2752-5295/acf606.
[3] Song, F., Dong, H., Wu, L., Leung, L. R., Lu, J., Dong, L., Wu, P., & Zhou, T. (2025). Hot season gets hotter due to rainfall delay over tropical land in a warming climate. Nature Communications, 16(1), 2188. doi:10.1038/s41467-025-57501-6.
[4] Ktavina, V. (2021). Way Sekampung and the future of Lampung farmers. Kompas, Jakarta, Indonesia. Available online: https://www.kompas.id/artikel/way-sekampung-dan-masa-depan-petani-lampung (accessed on September 2025). (In Malay).
[5] Yang, J., Cheng, C., Wang, Z., & Liu, P. (2024). Projected dryness/wetness pattern and influence factors in China under the CMIP6 scenarios for 2021–2100. Geomatics, Natural Hazards and Risk, 15(1), 2415529. doi:10.1080/19475705.2024.2415529.
[6] Almazroui, M., Islam, M. N., Saeed, F., Saeed, S., Ismail, M., Ehsan, M. A., Diallo, I., O’Brien, E., Ashfaq, M., Martínez-Castro, D., Cavazos, T., Cerezo-Mota, R., Tippett, M. K., Gutowski, W. J., Alfaro, E. J., Hidalgo, H. G., Vichot-Llano, A., Campbell, J. D., Kamil, S., … Barlow, M. (2021). Projected Changes in Temperature and Precipitation Over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Systems and Environment, 5(1), 1–24. doi:10.1007/s41748-021-00199-5.
[7] Ge, F., Zhu, S., Peng, T., Zhao, Y., Sielmann, F., Fraedrich, K., Zhi, X., Liu, X., Tang, W., & Ji, L. (2019). Risks of precipitation extremes over Southeast Asia: Does 1.5°c or 2°c global warming make a difference? Environmental Research Letters, 14(4), 44015. doi:10.1088/1748-9326/aaff7e.
[8] Rizaldi, A., Darmawan, A., Kaskoyo, H., & Mubarok, H. (2021). dentification of Land Cover Changes as a Basis for Forest Management Strategies (Case Study of the Batutegi Protected Forest Management Unit, Lampung). Prosiding Fahutan, 2(02). (In Indonesian).
[9] Hijioka, Y., Lin, E., Pereira, J. J., Corlett, R. T., Cui, X., Insarov, G., ... & Wang, W. (2014). IPCC Fifth Assessment Report: Chapter 24 Asia. Climate Change 2014-Impacts, Adaptation and Vulnerability: Part B: Regional Aspects Working Group II Contribution to the IPCC Fifth Assessment Report, 1327-1370.
[10] Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O’Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., … Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168. doi:10.1016/j.gloenvcha.2016.05.009.
[11] Bauer, N., Calvin, K., Emmerling, J., Fricko, O., Fujimori, S., Hilaire, J., Eom, J., Krey, V., Kriegler, E., Mouratiadou, I., Sytze de Boer, H., van den Berg, M., Carrara, S., Daioglou, V., Drouet, L., Edmonds, J. E., Gernaat, D., Havlik, P., Johnson, N., … van Vuuren, D. P. (2017). Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives. Global Environmental Change, 42, 316–330. doi:10.1016/j.gloenvcha.2016.07.006.
[12] Shindell, D. T., Lamarque, J. F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J., Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins, W. J., Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., … Lo, F. (2013). Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 13(6), 2939–2974. doi:10.5194/acp-13-2939-2013.
[13] Larsen, D., Bursi, J., Waldron, B., Schoefernacker, S., & Eason, J. (2020). Recharge pathways and rates for a sand aquifer beneath a loess-mantled landscape in western Tennessee, USA. Journal of Hydrology: Regional Studies, 28, 100667. doi:10.1016/j.ejrh.2020.100667.
[14] Kundzewicz, Z. W., Krysanova, V., Dankers, R., Hirabayashi, Y., Kanae, S., Hattermann, F. F., Huang, S., Milly, P. C. D., Stoffel, M., Driessen, P. P. J., Matczak, P., Quevauviller, P., & Schellnhuber, H.-J. (2016). Differences in flood hazard projections in Europe – their causes and consequences for decision making. Hydrological Sciences Journal, 1241398. doi:10.1080/02626667.2016.1241398.
[15] USAE-HEC-HMS. (2000). Hydrologic Modeling System Technical Reference Manual. In Hydrologic Modeling System HEC-HMS Technical Reference Manual (Issue March). US Army Corps of Engineers, Hydrologic Engineering Center, New Jersey, United States.
[16] Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., ... & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508. doi:10.13031/2013.42256.
[17] oucks, D. P., & van Beek, E. (2017). Water Resource Systems Planning and Management. Springer International Publishing, Cham, Switzerland. doi:10.1007/978-3-319-44234-1.
[18] Ahmadzadeh, H., Jamali, A., & Karamouz, M. (n.d.). River basin simulation modeling for integrated water resources planning. Environmental Modeling & Assessment, 27(1), 75–92. doi:10.1007/s10666-021-09787-0.
[19] Patil, J. P., Gurjar, S., Bons, C. A., & Goel, M. K. (2021). Strategic Analysis of Water Resources in the Ganga Basin, India. The Ganga River Basin: A Hydrometeorological Approach, 309-322. doi:10.1007/978-3-030-60869-9_20.
[20] Klein Tank, A. M. G., Zwiers, F. W. & Zhang, X. B. (2009). Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. WCDMP No. 72, World Meteorological Organization, Geneva, Switzerland.
[21] Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. doi:10.13031/2013.23153.
[22] Cabrera, J. (2012). Calibration of hydrological models. Instituto para la Mitigación de los Efectos del Fenómeno El Niño, Universidad Nacional de Ingeniería, Facultad de Ingeniería Civil, Perú, 1(1). (In Spanish).
[23] Zuo, J., Pullen, S., Palmer, J., Bennetts, H., Chileshe, N., & Ma, T. (2015). Impacts of heat waves and corresponding measures: a review. Journal of Cleaner Production, 92, 1–12. doi:10.1016/j.jclepro.2014.12.078.
[24] Cook, M. A., King, C. W., Davidson, F. T., & Webber, M. E. (2015). Assessing the impacts of droughts and heat waves at thermoelectric power plants in the United States using integrated regression, thermodynamic, and climate models. Energy Reports, 1, 193–203. doi:10.1016/j.egyr.2015.10.002.
[25] Ehsani, N., Vörösmarty, C. J., Fekete, B. M., & Stakhiv, E. Z. (2017). Reservoir operations under climate change: Storage capacity options to mitigate risk. Journal of Hydrology, 555, 435–446. doi:10.1016/j.jhydrol.2017.09.008.
[26] Hulme, M. & Sheard, N. (1999). Climate Change Scenarios for Indonesia. Climatic Research Unit, Norwich, United Kingdom.
[27] Boer, R., & Faqih, A. (2004). Current and future rainfall variability in Indonesia. An Integrated Assessment of Climate Change Impacts, Adaptation and Vulnerability in Watershed Areas and Communities in Southeast Asia, Report from AIACC Project No AS21, Int. START Secretariat, Washington, United States.
[28] Case, M., Ardiansyah, F., & Spector, E. (2007). Climate change in Indonesia. South-East Asia’s environmental future: the search for sustainability. WWF-International Climate Change Programme, 1-15.
[29] Karaeren, V. (2014). Maximizing energy generation of a cascade hydropower system. Master Thesis, Middle East Technical University, Ankara, Türkiye.
[30] Sadollah, A., Nasir, M., & Geem, Z. W. (2020). Sustainability and Optimization: From Conceptual Fundamentals to Applications. Sustainability, 12(5), 2027. doi:10.3390/su12052027.
[31] Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. doi:10.5194/gmd-9-1937-2016.
[32] Das, P., & Ganguly, A. R. (2025). Finer resolutions and targeted process representations in earth system models improve hydrologic projections and hydroclimate impacts. NPJ Climate and Atmospheric Science, 8(1), 247. doi:10.1038/s41612-025-01134-5.
[33] Thrasher, B., Khajehei, S., Kim, J. B., & Brosnan, I. (2024). NASA Earth Exchange Downscaled Climate Projections 30 Arcseconds CMIP6. Scientific Data, 11(1), 1346. doi:10.1038/s41597-024-04188-x.
[34] Wikipedia. (2025). Köppen climate classification (Klasifikasi iklim Köppen). Wikipedia. Available online: https://id.wikipedia.org/wiki/Klasifikasi_iklim_K%C3%B6ppen (accessed September 2025).
[35] USACE. (2008) Hydrologic Modeling System HEC-HMS. User's Manual. Hydrologic Engineering Center, Washington, United States.
[36] Swastika, D., Wulandari, D. A., & Sriyana, I. (2023). Simulation of Batutegi Reservoir Operation Pattern, Lampung Province. Cantilever: Jurnal Penelitian Dan Kajian Bidang Teknik Sipil, 11(2), 81-92. doi:10.35139/cantilever.v11i2.149.
[37] Balai Besar Wilayah Sungai (BBWS) Mesuji–Sekampung. (2023). Technical documentation and data on water resource management patterns in the Sekampung River Basin. Kementerian Pekerjaan Umum dan Perumahan Rakyat, Jakarta, Indonesia. (In Indonesian).
[38] Al Hamid, I. M. I. (2024). Operation Optimization of Batujai Cascade Reservoir and Pengga Using HEC-ResSim Software. Ph.D. Thesis, Universitas Gadjah Mada, Yogyakarta, Indonesia. (In Indonesian).
[39] Chen, S., Xu, Y. P., Guo, Y., & Yu, X. (2025). Multi-objective optimization of urban water allocation considering recycled water. Water Resources Management, 39(6), 2615-2631. doi:10.1007/s11269-024-04081-7.
[40] Tang, R., & Wang, Y. (2025). Risk-Informed Multiobjective Optimization of Reservoir Operation. Water (Switzerland), 17(16), 2467. doi:10.3390/w17162467.
[41] Getahun, E., Prada, A. F., Zhang, Z., Keefer, L., & Qie, G. (2025). Comprehensive Hydrologic Modeling for Evaluating Impacts of Future Water Uses and Climate Change on Water Resources Sustainability. Water Resources Management. doi:10.1007/s11269-025-04333-0.
[42] Lee, E., Ji, J., Yi, S., Lee, S., Yoon, J., & Yi, J. (2025). Developing Resilient Reservoir System Operations: A Simulation Approach Incorporating Rule Curve. Water Resources Management, 39(13), 6889–6905. doi:10.1007/s11269-025-04280-w.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














