Performance of Sustainable Underwater Concrete Containing GGBS and Micro Silica with Anti-Washout
Downloads
Anti-washout concrete (AWC) is engineered for underwater constructions, with resistance to dispersion achieved through the use of anti-washout admixtures (AWAs). This study experimentally investigated the design of sustainable anti-washout concrete mixtures containing a high content of by-product waste materials. The study aims to evaluate sustainable underwater concrete mixtures with high supplementary cementitious materials content, analyze the influence of AWA on compressive strength, and assess the compatibility of anti-washout admixture with both SCMs and superplasticizers. However, the interaction of AWA with a high content of ground granulated blast furnace slag (GGBS) and microsilica in underwater concrete has not been previously investigated. Two groups of concrete mixtures were developed: the first group consisted of two sustainable mixtures, with and without AWA, containing 52.15% ordinary Portland cement (OPC), 43.5% GGBS, and 4.35% micro silica. The second group consisted of two conventional mixtures: one with 100% OPC and the other with 100% OPC plus AWA. Fresh properties, such as slump flow, viscosity (measured by the V-funnel), and air content, were evaluated. Compressive strength was measured to assess mechanical performance. Durability was investigated using four tests: rapid chloride penetration tests (RCPT), water penetration, water absorption, and initial surface absorption tests (ISAT). An anti-washout test was conducted to determine the effectiveness of AWC in minimizing the washout of cement particles. The mixture design introduces an innovative approach to utilizing high levels of SCMs for producing high-strength, durable, and sustainable AWC. The durability results showed that the ISAT test was ineffective for evaluating concrete performance underwater. This research contributes to understanding the effects of AWAs and their compatibility with superplasticizers and SCMs. AWA forms a thixotropic gel that protects cement particles from washout and is highly compatible with superplasticizers.
Downloads
[1] Xiao, S., Zhang, M., Zou, D., Liu, T., Zhou, A., & Li, Y. (2023). Influence of seawater and sea sand on the performance of Anti-washout underwater concrete: The overlooked significance of Mg2+. Construction and Building Materials, 374, 130932. doi:10.1016/j.conbuildmat.2023.130932.
[2] Wang, J., Huang, K., Chu, H., & Li, J. (2025). Synthesis and Performance Evaluation of Anti-Washout Admixtures for Underwater Non-Dispersive Concrete Based on Nanosilica. Materials, 18(11), 2541. doi:10.3390/ma18112541.
[3] Sun, Z., Xu, B., Yang, Z., Sun, M., Xian, X., & Chen, B. (2025). Resolving rheological dilemma in non-dispersible underwater concrete: Conflict between fluidity and anti-washout. Construction and Building Materials, 493, 143258. doi:10.1016/j.conbuildmat.2025.143258.
[4] Poudyal, R., Paneru, B., Paneru, B., Giri, T., Paneru, B., Reynolds, T., Poudyal, K. N., & Dangi, M. B. (2025). Exploring cement Production’s role in GDP using explainable AI and sustainability analysis in Nepal. Case Studies in Chemical and Environmental Engineering, 11, 101128. doi:10.1016/j.cscee.2025.101128.
[5] Alsaffar, D. M., Al-Shathr, B. S., & Abed, S. K. (2025). Durability of reactive powder underwater concrete exposed to saline environment: Shatt Al-Arab, Southern Iraq case study. Innovative Infrastructure Solutions, 10(3), 102. doi:10.1007/s41062-024-01857-z.
[6] Amran, M., Makul, N., Fediuk, R., Lee, Y. H., Vatin, N. I., Lee, Y. Y., & Mohammed, K. (2022). Global carbon recoverability experiences from the cement industry. Case Studies in Construction Materials, 17. doi:10.1016/j.cscm.2022.e01439.
[7] Dahanni, H., Ventura, A., Le Guen, L., Dauvergne, M., Orcesi, A., & Cremona, C. (2024). Life cycle assessment of cement: Are existing data and models relevant to assess the cement industry’s climate change mitigation strategies? A literature review. Construction and Building Materials, 411, 134415. doi:10.1016/j.conbuildmat.2023.134415.
[8] Ahmad Zaidi, F. H., Ahmad, R., Al Bakri Abdullah, M. M., Abd Rahim, S. Z., Yahya, Z., Li, L. Y., & Ediati, R. (2021). Geopolymer as underwater concreting material: A review. Construction and Building Materials, 291, 123276. doi:10.1016/j.conbuildmat.2021.123276.
[9] Zhong, W. Q., Gang, M. S., & Ren, H. T. (2010). Compression performance of non-dispersible concrete columns. Large Structures and Infrastructures for Environmentally Constrained and Urbanised Areas, 255, 468–469. doi:10.2749/222137810796025393.
[10] Ali Sikandar, M., Wazir, N. R., Khan, M. A., Nasir, H., Ahmad, W., & Alam, M. (2020). Effect of various anti-washout admixtures on the properties of non-dispersible underwater concrete. Construction and Building Materials, 245, 118469. doi:10.1016/j.conbuildmat.2020.118469.
[11] HLu, H., Sun, X., & Ma, H. (2022). Anti-washout Concrete: An overview. Construction and Building Materials, 344, 128151. doi:10.1016/j.conbuildmat.2022.128151.
[12] Wei, M., Tang, Y., Chen, L., Zhang, B., Zhang, S., Zhao, K., & Wu, Z. (2022). Enhanced mechanical properties and anti-washout of calcium phosphate cement/montmorillonite composite bone-cement for bone-repair applications. Ceramics International, 48(23), 35185–35197. doi:10.1016/j.ceramint.2022.08.117.
[13] Liu, F., Wang, B., Wang, M., & Yuan, X. (2021). Analysis on pore structure of non-dispersible underwater concrete in saline soil area. Journal of Renewable Materials, 9(4), 723–742. doi:10.32604/jrm.2021.013664.
[14] Al-Tamimi, A. K. (2019). Design and evaluation of underwater concrete. Developments in the Formulation and Reinforcement of Concrete, Elsevier, Amsterdam, Netherlands. doi:10.1016/b978-0-08-102616-8.00014-9.
[15] Nasr, A. A., Chen, S., & Jin, F. (2021). Washout resistance of self-protected underwater concrete in freshwater and seawater. Construction and Building Materials, 289, 123186. doi:10.1016/j.conbuildmat.2021.123186.
[16] Lu, H., He, Y., Li, C., Wei, H., & Xiang, J. (2025). Anti-washout mechanism of underwater cement paste: a DEM-CFD coupling analysis method. Computational Particle Mechanics, 12(5), 3461–3477. doi:10.1007/s40571-025-01029-5.
[17] Guo, H., Tang, Z., Liu, Q., Xu, J., Wang, M., Liang, R., & Sun, G. (2021). Ultra-stable anti-washout cement grout achieved by super water absorbing villus-like nanocomposite hydrogel. Construction and Building Materials, 301, 124035. doi:10.1016/j.conbuildmat.2021.124035.
[18] CONMIX Ltd. (2015). Technical datasheet: Mega Add UW – Underwater stabilizer for concrete and mortar. CONMIX Ltd., Sharjah, United Arab Emirates.
[19] Yao, S. X., Berner, D. E., & Gerwick, B. C. (1999). Assessment of underwater concrete technologies for in-the-wet construction of navigation structures (Report No. USACE TR INP SL‑1). U.S. Army Corps of Engineers, Washington, DC, United States.
[20] Assaad, J. J., Daou, Y., & Harb, J. (2011). Use of CEM Approach to Develop and Optimize High-Performance Underwater Concrete. Journal of Materials in Civil Engineering, 23(7), 1094–1102. doi:10.1061/(asce)mt.1943-5533.0000254.
[21] CRD-C 661-06. (2006). Test Method for Determining the Resistance of Freshly Mixed Concrete to Washing out in Water. US Army Experimentation System, Maryland, United States. Available online: https://mtc.erdc.dren.mil/pdfs/Standards/ crd_c61.pdf?utm_source=copilot.com (accessed on November 2025).
[22] Khayat, K. H. (1995). Effects of antiwashout admixtures on fresh concrete properties. Materials Journal, 92(2), 164-171. doi:10.14359/9767.
[23] Kurniawandy, A., Ismeddiyanto, Haekal, M., & Zikri, R. (2025). Study of the Mechanical Properties of Underwater Concrete in Seawater Environments. Journal of Geoscience, Engineering, Environment, and Technology, 10(1), 51–58. doi:10.25299/jgeet.2025.10.1.20989.
[24] Mindess, S. (Ed.). (2019). Developments in the Formulation and Reinforcement of Concrete. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/C2017-0-03347-5.
[25] Ganesh Kumar, B., Muthu, M., Chajec, A., Sadowski, Ł., & Govindaraj, V. (2022). The effect of silica fume on the washout resistance of environmentally friendly underwater concrete with a high-volume of siliceous fly ash. Construction and Building Materials, 327, 127058. doi:10.1016/j.conbuildmat.2022.127058.
[26] Moon, H. Y., & Shin, K. J. (2006). Evaluation on steel bar corrosion embedded in antiwashout underwater concrete containing mineral admixtures. Cement and Concrete Research, 36(3), 521–529. doi:10.1016/j.cemconres.2005.09.014.
[27] Brzozowski, P., & Horszczaruk, E. (2021). Influence of surface preparation on adhesion of underwater repair concretes under hydrostatic pressure. Construction and Building Materials, 310, 125153. doi:10.1016/j.conbuildmat.2021.125153.
[28] Khayat, K. H., & Sonebi, M. (2001). Effect of mixture composition on washout resistance of highly flowable underwater concrete. ACI Materials Journal, 98(4), 289–295. doi:10.14359/10397.
[29] United Nations (2025). Climate Reports. United Nations, New York, United States. Available online: https://www.un.org/en/climatechange/reports (accessed on November 2025).
[30] Assaad, J. J., Gerges, N., Khayat, K. H., Lattouf, N., & Mansour, J. (2019). Assessment of bond strength of underwater polymer-modified concrete. ACI Materials Journal, 116(6), 169–178. doi:10.14359/51716982.
[31] Salih, M. A., Ahmed, S. K., Alsafi, S., Abullah, M. M. A. B., Jaya, R. P., Abd Rahim, S. Z., Aziz, I. H., & Thanaya, I. N. A. (2022). Strength and Durability of Sustainable Self-Consolidating Concrete with High Levels of Supplementary Cementitious Materials. Materials, 15(22), 7991. doi:10.3390/ma15227991.
[32] Grzeszczyk, S., Jurowski, K., Bosowska, K., & Grzymek, M. (2019). The role of nanoparticles in decreased washout of underwater concrete. Construction and Building Materials, 203, 670–678. doi:10.1016/j.conbuildmat.2019.01.118.
[33] Ge, X., Duran, L., Tao, M., DeGroot, D. J., Li, E., & Zhang, G. (2020). Characteristics of underwater cast and cured geopolymers. Cement and Concrete Composites, 114, 103783. doi:10.1016/j.cemconcomp.2020.103783.
[34] Horszczaruk, E., & Brzozowski, P. (2017). Properties of Underwater Concretes Containing Large Amount of Fly Ashes. Procedia Engineering, 196, 97–104. doi:10.1016/j.proeng.2017.07.178.
[35] Yuan, J., Wu, J., Liu, Z., & Zou, Z. (2020). Effects of Slag and Fly Ash on the Durability of Acrylic Emulsion Polymer–Modified Mortar. Journal of Materials in Civil Engineering, 32(7), 04020155. doi:10.1061/(asce)mt.1943-5533.0003223.
[36] Liu, Y. W., Lin, Y. Y., & Cho, S. W. (2020). Abrasion behavior of steel-fiber-reinforced concrete in hydraulic structures. Applied Sciences (Switzerland), 10(16), 5562. doi:10.3390/app10165562.
[37] BS EN 197-1. (2011). Cement Part 1: Composition, Specifications and Conformity Criteria for Common Cements. British Standard Institute (BSI), London, United Kingdom.
[38] BS EN 15167-1:2006. (2006). Ground granulated blast furnace slag for use in concrete, mortar and grout - Definitions, specifications and conformity criteria. British Standard Institute (BSI), London, United Kingdom.
[39] ASTM C494/C494M-19e1. (2024). Standard Specification for Chemical Admixtures for Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0494_C0494M-19E01.
[40] BS EN 934-2:2001. (2001). Admixtures for concrete, mortar and grout - Concrete admixtures. Definitions, requirements, conformity, marking and labelling. British Standard Institute (BSI), London, United Kingdom.
[41] BS EN 12350-12:2010. (2010). Testing fresh concrete - Self-compacting concrete. J-ring test. British Standard Institute (BSI), London, United Kingdom.
[42] BS EN 12350-6:2000. (2009). Testing fresh concrete - Density. British Standard Institute (BSI), London, United Kingdom.
[43] BS EN 12350-7:2000. (2010). Testing fresh concrete - Air content. Pressure methods. British Standard Institute (BSI), London, United Kingdom.
[44] BS EN 12350-12:2010. (2010). - Testing fresh concrete - Self-compacting concrete. J-ring test. British Standard Institute (BSI), London, United Kingdom.
[45] BS EN 12390-3:2002. (2002). Testing hardened concrete - Compressive strength of test specimens. British Standard Institute (BSI), London, United Kingdom.
[46] CRD-C 661-06. (2006). Specification for Antiwashout Admixtures for Concrete. US Army Experimentation System, Maryland, United States.
[47] EN 12390-8. (2000) Testing Hardened Concrete. Depth of Penetration of Water under Pressure. British Standard Institution (BSI), London, United Kingdom.
[48] BS 1881-122:2011+A1:2020. (2020). Testing concrete - Method for determination of water absorption. British Standard Institution (BSI), London, United Kingdom.
[49] ASTM C1202-19. (2022). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International, Pennsylvania, United States. doi:10.1520/C1202-19.
[50] BS 1881-208:1996. (1998). Testing concrete - Recommendations for the determination of the initial surface absorption of concrete. British Standard Institution (BSI), London, United Kingdom.
[51] Tsunoda, S. (1992). Antiwashout underwater concrete. Suichu fubunrisei concrete. Semento Konkurito (Cement and Concrete); (Japan), 548.
[52] Hwalla, J., Saba, M., & Assaad, J. J. (2020). Suitability of metakaolin-based geopolymers for underwater applications. Materials and Structures/Materiaux et Constructions, 53(5), 119. doi:10.1617/s11527-020-01546-0.
[53] Song, X., Zheng, H., Xu, L., Xu, T., & Li, Q. (2024). Comparative Study of the Performance of Underwater Concrete between Anionic and Nonionic Anti-Washout Admixtures. Buildings, 14(3), 817. doi:10.3390/buildings14030817.
[54] Wang, Y., Chen, S. Gui, Qiu, L. chao, Nasr, A. A., & Liu, Y. (2023). Experimental study on the slump-flow underwater for anti-washout concrete. Construction and Building Materials, 365, 130026. doi:10.1016/j.conbuildmat.2022.130026.
[55] European Project Group. (2005). The European guidelines for self compacting concrete: Specification, production and use. Available online: https://www.theconcreteinitiative.eu/images/ECP_Documents/EuropeanGuidelinesSelfCompactingConcrete.pdf (accessed on November 2025).
[56] EFNARC. (2005). The European Guidelines for Self-Compacting Concrete. European Federation of National Associations (EFNARC), Moosseedorf, Switzerland.
[57] Heniegal, A. M. (2017). Developing underwater concrete properties with and without anti-washout admixtures. International Journal of Scientific & Engineering Research, 7, 97-106.
[58] Khayat, K. H. (1996). Effects of antiwashout admixtures on properties of hardened concrete. ACI Materials Journal, 93(2), 134–146. doi:10.14359/1412.
[59] Bessaies-Bey, H., Khayat, K. H., Palacios, M., Schmidt, W., & Roussel, N. (2022). Viscosity modifying agents: Key components of advanced cement-based materials with adapted rheology. Cement and Concrete Research, 152, 106646. doi:10.1016/j.cemconres.2021.106646.
[60] Li, X., Li, G., Zhang, K., Pei, Z., Zhao, S., & Li, J. (2021). Cu-loaded Brushite bone cements with good antibacterial activity and operability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 109(6), 877–889. doi:10.1002/jbm.b.34752.
[61] EKoehler, E. P. (2007). Aggregates in self-consolidating concrete. Ph.D. Thesis, The University of Texas at Austin, Austin, United States.
[62] Koehler, E. P., Fowler, D. W., Foley, E. H., Rogers, G. J., Watanachet, S., & Jung, M. J. (2007). Self-consolidating concrete for precast structural applications: mixture proportions, workability, and early-age hardened properties. FHWA/TX-08/0-5134-1, Report No. 0-5134-1, Texas Department of Transportation, Austin, United States.
[63] BS EN 206:2013. (2013). Concrete - specification, performance, production and conformity (+A1:2016) (incorporating corrigendum May 2014). British Standard Institution (BSI), London, United Kingdom.
[64] Kim, D., Petrisor, I. G., & Yen, T. F. (2005). Evaluation of biopolymer-modified concrete systems for disposal of cathode ray tube glass. Journal of the Air and Waste Management Association, 55(7), 961–969. doi:10.1080/10473289.2005.10464682.
[65] Isik, I. E., & Ozkul, M. H. (2014). Utilization of polysaccharides as viscosity modifying agent in self-compacting concrete. Construction and Building Materials, 72, 239–247. doi:10.1016/j.conbuildmat.2014.09.017.
[66] Assaad, J. J., Daou, Y., & Salman, H. (2011). Correlating washout to strength loss of underwater concrete. Proceedings of Institution of Civil Engineers: Construction Materials, 164(3), 153–162. doi:10.1680/coma800035.
[67] Wang, J., Jiang, S., Cui, E., Yang, W., & Yang, Z. (2022). Strength gain monitoring and construction quality evaluation on non-dispersible underwater concrete using PZT sensors. Construction and Building Materials, 322, 126400. doi:10.1016/j.conbuildmat.2022.126400.
[68] Wu, S., Ge, Y., Jiang, S., Shen, S., & Zhang, H. (2021). Experimental study on the axial compression performance of an underwater concrete pier strengthened by self-stressed anti-washout concrete and segments. Materials, 14(21), 6567. doi:10.3390/ma14216567.
[69] Pacheco-Torgal, F., Ivanov, V., Karak, N., & Jonkers, H. (2016). Biopolymers and biotech admixtures for eco-efficient construction materials. Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/C2014-0-02075-8.
[70] Roussel, N., Ovarlez, G., Garrault, S., & Brumaud, C. (2012). The origins of thixotropy of fresh cement pastes. Cement and Concrete Research, 42(1), 148–157. doi:10.1016/j.cemconres.2011.09.004.
[71] Sonebi, M. (2006). Rheological properties of grouts with viscosity modifying agents as diutan gum and welan gum incorporating pulverised fly ash. Cement and Concrete Research, 36(9), 1609–1618. doi:10.1016/j.cemconres.2006.05.016.
[72] Roussel, N. (2012). Understanding the rheology of concrete. Woodhead Publishing, Sawston, United Kingdom. doi:10.1533/9780857095282.
[73] PMehta, P. K., & Monteiro, P. J. (2006). Concrete microstructure, properties, and materials. McGraw-Hill, Columbus, United States.
[74] Loeb, A. F. A., & Ellis, R. S. (2008). First Light in the Universe. Springer, berlin, Germany. doi:10.1007/978-3-540-74163-3.
[75] Assaad, J. J., & Issa, C. A. (2013). Mechanisms of strength loss in underwater concrete. Materials and Structures/Materiaux et Constructions, 46(10), 1613–1629. doi:10.1617/s11527-012-0004-2.
[76] ASTM C642-21. (2022). Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0642-21.
[77] Kale, S., & Arditi, D. (2003). Differentiation, conformity, and construction firm performance. Journal of Management in Engineering, 19(2), 52-59. doi:10.1061/(ASCE)0742-597X(2003)19:2(52).
[78] BS EN 206:2013+A1:2016. (2016). Concrete. Specification, performance, production and conformity. British Standard Institution (BSI), London, United Kingdom.
[79] Technical Report 54. (2000). Diagnosis of deterioration in concrete structures: identification of defects, evaluation and development of remedial action. Concrete Society, Sandhurst, United Kingdom.
[80] Cronin, B. (2024). Federal Highway Administration (FHWA) Update. IEEE Transactions on Intelligent Transportation Systems, 25(4), 54–70. doi:10.1109/tits.2024.3376187.
[81] Abolitz, A. L., Anderson, A. R., Birdy, J. N., Boaz, I., Boyd, A. D., Cichanski, W. J., ... & Hognestad, E. (1984). Guide for the Design and Construction of Fixed Offshore Concrete Structures. ACI 357R-84, 1-23.
[82] Andrade, C., Prieto, M., Tanner, P., Tavares, F., & d’Andrea, R. (2013). Testing and modelling chloride penetration into concrete. Construction and Building Materials, 39, 9-18. doi:10.1016/j.conbuildmat.2012.08.012.
[83] ACI 233R-03. (2003). Slag Cement in Concrete and Mortar. American Concrete Institute (ACI), Michigan, United States.
[84] Bremner, T., Hover, K., Poston, R., Broomfield, J., Joseph, T., Price, R., ... & Nmai, C. K. (2001). Protection of metals in concrete against corrosion. Technical Report for ACI Committee 222, American Concrete Institute (ACI), Michigan, United States.
[85] Report BR 254. (1994). Repair and maintenance of reinforced concrete. Building Research Establishment (BRE), Garston, United Kingdom.
[86] Fonseka, N. H. I. C., & Nanayakkara, S. M. A. (2023). Assessment of Concrete Durability by Surface Resistivity and Initial Surface Absorption. 12th International Conference on Structural Engineering and Construction Management, Lecture Notes in Civil Engineering, Springer, Singapore. doi:10.1007/978-981-19-2886-4_43.
[87] Singh, N., & Singh, J. (2025). Characterization of Concrete with Ferrock as a Potential Cement Substitute: Mechanical Strength, Durability and Microstructure analysis. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2025, 1–25. doi:10.1007/s40996-025-01885-4.
[88] Zeyad, A. M. (2024). Effect of harsh environment on cement mortar containing natural pozzolans. Case Studies in Construction Materials, 20. doi:10.1016/j.cscm.2023.e02808.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















