Strength Characteristics and Material Design of Recycled Flexible Pavement Materials

Cement Stabilization Crushed Rock (CR) Reclaimed Asphalt Pavement (RAP) Unconfined Compressive Strength (UCS)

Authors

  • Attaphol Bubpi Department of Civil Technical Education, Faculty of Technical Education, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand https://orcid.org/0009-0008-2885-7010
  • Anukun Arngbunta Material Control and Supervision Group, Department of Highways, Bureau of Materials Analysis and Inspection, Thailand
  • Prach Amornpinyo
    prach.am@rmuti.ac.th
    Department of Civil Technical Education, Faculty of Technical Education, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand https://orcid.org/0009-0004-2781-9507
  • Yongyuth Sirisriphet Department of Civil Technical Education, Faculty of Technical Education, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
  • Tawatchai Tho-In Department of Civil Technical Education, Faculty of Technical Education, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
  • Sakchai Srichandum Department of Civil Technical Education, Faculty of Technical Education, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
  • Preechawut Srirueng Department of Civil Technical Education, Faculty of Technical Education, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
  • Apichit Kampala Faculty of Railway Systems and Transportation, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand https://orcid.org/0009-0006-5584-267X
  • Patcharapol Posi Department of Civil Engineering, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand https://orcid.org/0000-0002-4509-7534
  • Prinya Chindaprasirt 5) Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand. 6) Academy of Science, Royal Society of Thailand, Dusit, Bangkok 10300, Thailand https://orcid.org/0000-0003-1062-3626

Downloads

This study develops a strength-based mix-design framework for rehabilitating flexible pavements using reclaimed asphalt pavement (RAP) blended with crushed rock (CR) and cement. Objectives were to quantify 7-day unconfined compressive strength (UCS) as a function of mixture variables and to provide field-ready proportioning equations. Methods comprised laboratory testing of RAP–CR blends (RAP = 0–100%) with 2–5% cement, Modified Proctor compaction, and 7-day UCS; regression related UCS to a modified parameter (w/c)(1−k·AS), where asphalt content (AS) is obtained from AS = 0.04·RAP. Findings show that increasing RAP lowers dry density (2.31→2.11 g/cm³) and raises optimum moisture (5.03→7.17%). The 7-day prediction is qᵤ,7 = 23.44/[(w/c)(1−0.22·AS)]0.677 (R² = 0.863). A worked example (4-cm asphalt over a 20-cm base; 20-cm milling) gives RAP = 20%, AS = 0.80, recommended w/c = 1.31, and cement = 4.03% at OMC = 5.28% and dry density = 2.276 g/cm³, satisfying 1.72 MPa (17.5 kg/cm²) at 7 days. Novelty/Improvement: the framework consolidates RAP content and binder effects into a single modified w/c parameter, enabling rapid, transparent proportioning for construction control. Broader impacts include reduced demand for virgin aggregate and haul-off of demolition debris, fewer truck movements and landfill burdens, and potential life-cycle cost savings in network-level rehabilitation.