Strength Characteristics and Material Design of Recycled Flexible Pavement Materials
Downloads
This study develops a strength-based mix-design framework for rehabilitating flexible pavements using reclaimed asphalt pavement (RAP) blended with crushed rock (CR) and cement. Objectives were to quantify 7-day unconfined compressive strength (UCS) as a function of mixture variables and to provide field-ready proportioning equations. Methods comprised laboratory testing of RAP–CR blends (RAP = 0–100%) with 2–5% cement, Modified Proctor compaction, and 7-day UCS; regression related UCS to a modified parameter (w/c)(1−k·AS), where asphalt content (AS) is obtained from AS = 0.04·RAP. Findings show that increasing RAP lowers dry density (2.31→2.11 g/cm³) and raises optimum moisture (5.03→7.17%). The 7-day prediction is qᵤ,7 = 23.44/[(w/c)(1−0.22·AS)]0.677 (R² = 0.863). A worked example (4-cm asphalt over a 20-cm base; 20-cm milling) gives RAP = 20%, AS = 0.80, recommended w/c = 1.31, and cement = 4.03% at OMC = 5.28% and dry density = 2.276 g/cm³, satisfying 1.72 MPa (17.5 kg/cm²) at 7 days. Novelty/Improvement: the framework consolidates RAP content and binder effects into a single modified w/c parameter, enabling rapid, transparent proportioning for construction control. Broader impacts include reduced demand for virgin aggregate and haul-off of demolition debris, fewer truck movements and landfill burdens, and potential life-cycle cost savings in network-level rehabilitation.
Downloads
[1] Santos, J., Bryce, J., Flintsch, G., Ferreira, A., & Diefenderfer, B. (2015). A life cycle assessment of in-place recycling and conventional pavement construction and maintenance practices. Structure and Infrastructure Engineering, 11(9), 1199–1217. doi:10.1080/15732479.2014.945095.
[2] Turk, J., Mauko Pranjić, A., Mladenovič, A., Cotič, Z., & Jurjavčič, P. (2016). Environmental comparison of two alternative road pavement rehabilitation techniques: Cold-in-place-recycling versus traditional reconstruction. Journal of Cleaner Production, 121, 45–55. doi:10.1016/j.jclepro.2016.02.040.
[3] Pan, Y., Han, D., Yang, T., Tang, D., Huang, Y., Tang, N., & Zhao, Y. (2021). Field observations and laboratory evaluations of asphalt pavement maintenance using hot in-place recycling. Construction and Building Materials, 271, 121864. doi:10.1016/j.conbuildmat.2020.121864.
[4] Yao, Y., Yang, J., Gao, J., Zheng, M., Xu, J., Zhang, W., & Song, L. (2023). Strategy for improving the effect of hot in-place recycling of asphalt pavement. Construction and Building Materials, 366, 130054. doi:10.1016/j.conbuildmat.2022.130054.
[5] Guthrie, W. S., Brown, A. V., & Eggett, D. L. (2007). Cement stabilization of aggregate base material blended with reclaimed asphalt pavement. Transportation Research Record, 2026(2026), 47–53. doi:10.3141/2026-06.
[6] Pappas, J. (2012). Environmental considerations of in-place recycling. Virginia pavement recycling conference, Virginia Tech Transportation Institute, 27 November, 2012, Virginia, United States.
[7] Bartku, E. C. (2014). In-Situ recycling: Applications, guidelines, and case study for local governments. Master Thesis, Virginia Tech, Virginia, United States.
[8] Hoy, M., Horpibulsuk, S., & Arulrajah, A. (2016). Strength development of Recycled Asphalt Pavement - Fly ash geopolymer as a road construction material. Construction and Building Materials, 117, 209–219. doi:10.1016/j.conbuildmat.2016.04.136.
[9] Ghanizadeh, A. R., Rahrovan, M., & Bafghi, K. B. (2018). The effect of cement and reclaimed asphalt pavement on the mechanical properties of stabilized base via full-depth reclamation. Construction and Building Materials, 161, 165–174. doi:10.1016/j.conbuildmat.2017.11.124.
[10] Melese, E., Baaj, H., Tighe, S., Zupko, S., & Smith, T. (2019). Characterisation of full-depth reclaimed pavement materials treated with hydraulic road binders. Construction and Building Materials, 226, 778–792. doi:10.1016/j.conbuildmat.2019.07.317.
[11] Chhabra, R. S., Ransinchung, G. D. R. N., & Islam, S. S. (2021). Performance analysis of cement treated base layer by incorporating reclaimed asphalt pavement material and chemical stabilizer. Construction and Building Materials, 298, 123866. doi:10.1016/j.conbuildmat.2021.123866.
[12] Kwon, J., Seo, Y., Yang, J., & Kaplan, A. (2021). Field and numerical investigation of full depth reclamation with Portland cement in Georgia. Transportation Geotechnics, 27, 100465. doi:10.1016/j.trgeo.2020.100465.
[13] Kampala, A., Suebsuk, J., Sakdinakorn, R., Arngbunta, A., & Chindaprasirt, P. (2024). Coal-biomass fly ash as cement replacement in loess stabilisation for road materials. International Journal of Pavement Engineering, 25(1), 2296956. doi:10.1080/10298436.2023.2296956.
[14] Hoyos, L. R., Puppala, A. J., & Ordonez, C. A. (2011). Characterization of Cement-Fiber-Treated Reclaimed Asphalt Pavement Aggregates: Preliminary Investigation. Journal of Materials in Civil Engineering, 23(7), 977–989. doi:10.1061/(asce)mt.1943-5533.0000267.
[15] Taha, R. (2003). Evaluation of Cement Kiln Dust-Stabilized Reclaimed Asphalt Pavement Aggregate Systems in Road Bases. Transportation Research Record, II(1819), 11–17. doi:10.3141/1819b-02.
[16] Taha, R., Al-Harthy, A., Al-Shamsi, K., & Al-Zubeidi, M. (2002). Cement Stabilization of Reclaimed Asphalt Pavement Aggregate for Road Bases and Subbases. Journal of Materials in Civil Engineering, 14(3), 239–245. doi:10.1061/(asce)0899-1561(2002)14:3(239).
[17] Li, Y., Luo, C., Ji, K., Zhang, H., & Sun, B. (2024). Laboratory Evaluation of Strength Performance of Full-Depth Reclamation with Portland Cement Material. Coatings, 14(5), 573. doi:10.3390/coatings14050573.
[18] TxDOT. (2024). Full-Depth Reclamation with Asphalt Binders: Construction Guidelines. Texas Department of Transportation (TxDOT), Austin, United States.
[19] Stevens, D. H., Marzke, O. T., Mickle, D. G., & Carey, W. N. Jr. (19687). Maintenance Management. Highway Research Board, Washington, United States.
[20] ACI 230.1R : 2009. (2009). Report on Soil–Cement. American Concrete Institute (ACI), Farmington Hills, United States.
[21] MOT 242-2024. (2024). In-Place Recycling of Existing Pavement Materials. Department of Rural Roads (DRR), Bangkok, Thailand. (In Thai).
[22] Standard No. DH-S 213/2543. (2000). Thailand. Pavement Recycling. Department of Highways (DOH), Bangkok, Thailand. (In Thai).
[23] Suebsuk, J., Suksan, A., & Horpibulsuk, S. (2014). Strength assessment of cement treated soil-reclaimed asphalt pavement (RAP) mixture. International Journal of GEOMATE, 6(2), 878–884. doi:10.21660/2014.12.3262.
[24] MOTC 244-2013. (2013). Thailand. Standard for Soil–Cement Base. Department of Rural Roads (DRR), Bangkok, Thailand. (In Thai).
[25] Abrams, D. A. (1942). Design of concrete mixtures. American Concrete Institute, ACI Special Publication, SP-052(1), 309–330.
[26] Haichert, R., Kelln, R., Wandzura, C., Berthelot, C., & Guenther, D. (2012). Cement stabilization of conventional granular base and recycled crushed portland cement concrete. Transportation Research Record, 2310(2310), 121–126. doi:10.3141/2310-13.
[27] Horpibulsuk, S., Katkan, W., Sirilerdwattana, W., & Rachan, R. (2006). Strength development in cement stabilized low plasticity and coarse grained soils: Laboratory and field study. Soils and Foundations, 46(3), 351–366. doi:10.3208/sandf.46.351.
[28] Lorenzo, G. A. (2005). Fundamentals of Cement-admixed Clay in Deep Mixing and Its Behavior as Foundation Support of Reinforced Embankment on Subsiding Soft Clay Ground. Ph.D. Thesis, Asian Institute of Technology, Khlong Nueng, Thailand.
[29] McConnell, T. (2008). A Case Study of a Cement-Stabilized Aggregate Base Course on SC-5, York County, South Carolina. Proceedings of the 16th Annual ICAR Symposium, 2008.
[30] Peng, Y., & He, Y. (2009). Structural characteristics of cement-stabilized soil bases with 3D finite element method. Frontiers of Architecture and Civil Engineering in China, 3(4), 428–434. doi:10.1007/s11709-009-0059-5.
[31] Portland Cement Association. (2019). Guide to Full-Depth Reclamation (FDR) with Cement. National Concrete Pavement Technology Center, Institute for Transportation, Iowa State University, Ames, United States.
[32] Suddeepong, A., Intra, A., Horpibulsuk, S., Suksiripattanapong, C., Arulrajah, A., & Shen, J. S. (2018). Durability against wetting-drying cycles for cement-stabilized reclaimed asphalt pavement blended with crushed rock. Soils and Foundations, 58(2), 333–343. doi:10.1016/j.sandf.2018.02.017.
[33] Suebsuk, J., Horpibulsuk, S., Suksan, A., Suksiripattanapong, C., Phoo-ngernkham, T., & Arulrajah, A. (2019). Strength prediction of cement-stabilised reclaimed asphalt pavement and lateritic soil blends. International Journal of Pavement Engineering, 20(3), 332–338. doi:10.1080/10298436.2017.1293265.
[34] Kampala, A., Suebsuk, J., Daprom, P., Arngbunta, A., & Chindaprasirt, P. (2024). Strength characteristics and mix design of full-depth reclamation of asphalt pavement with cement. Construction and Building Materials, 438, 136901. doi:10.1016/j.conbuildmat.2024.136901.
[35] Ayawanna, J., Suksawat, T., Sertsoongnern, P., & Chaiyaput, S. (2024). The use of asphalt waste dust for stabilization of sustainable pavement recycling. Construction and Building Materials, 446, 137936. doi:10.1016/j.conbuildmat.2024.137936.
[36] Azam, A., Gabr, A., Ezzat, H., Arab, M., Alshammari, T. O., Alotaib, E., & Zeiada, W. (2024). Life cycle assessment and pavement performance of recycled aggregates in road construction. Case Studies in Construction Materials, 20, 3062. doi:10.1016/j.cscm.2024.e03062.
[37] Xia, Q., Zhang, H., Miao, W., Guo, X., & Zhang, Q. (2025). Multi-objective optimization of full depth reclamation with Portland cement using NSGA-II for sustainable pavement rehabilitation. Frontiers in Built Environment, 11, 1631169. doi:10.3389/fbuil.2025.1631169.
[38] ASTM C188-16. (2017). Standard Test Method for Density of Hydraulic Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0188-16.
[39] ASTM D2166/D2166M-24. (2024). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, Pennsylvania, United States. doi:10.1520/D2166_D2166M-24.
[40] ASTM D6307-1. (2016). Standard Test Method for Asphalt Content of Hot-Mix Asphalt by Ignition Method. ASTM International, Pennsylvania, United States. doi:10.1520/D6307-10.
[41] MOTC 230-2002. (2002). Test Method for Determining the Optimum Cement Content for Soil–Cement. Department of Highways (DOH), Bangkok, Thailand. (In Thai).
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















