Combined Effect of Basalt Fibers and Bentonite Clay on Complex Mortar Properties
Downloads
This study examined the effects of basalt microfibers and amorphous-structured bentonite clay on the properties of complex mortar mixtures composed of cement and quicklime, utilizing locally sourced raw materials. Bentonite clay was subjected to thermal treatments at 400, 600, and 1000°C, and a technogenic pozzolanic additive was incorporated to investigate its influence on mortar performance. Optimal results were observed for the clay treated at 600°C, which was subsequently used in the mortar formulations. The primary objective was to assess the effects of varying basalt microfiber dosages (0.5%, 1%, and 2%) and thermally treated bentonite clay concentrations (5%, 15%, and 25%) on the chemical composition, physico-mechanical properties, and structural development of the resulting multi-component systems. Advanced analytical techniques, including SEM/EDS, XRD, FTIR, XRF, DLS, and thermochemical analyses (TG/DTG, TG/DSC, and TG/MS), were used to evaluate the mineralogical composition, particle size distribution, microstructure, and thermal behavior. The findings show that the combined use of basalt microfibers and thermally treated bentonite clay significantly enhanced the mechanical strength and structural formation of the mortars. This study provides novel insights into the synergistic effects of these components, offering a promising approach for enhancing mortar performance using locally sourced materials.
Downloads
[1] Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., & Scrivener, K. L. (2020). Environmental impacts and decarbonization strategies in the cement and concrete industries. Nature Reviews Earth and Environment, 1(11), 559–573. doi:10.1038/s43017-020-0093-3.
[2] Miller, S. A., & Moore, F. C. (2020). Climate and health damages from global concrete production. Nature Climate Change, 10(5), 439–443. doi:10.1038/s41558-020-0733-0.
[3] Capros, P., Kouvaritakis, N., Mantzos, L., & Hendriks, C. (2001). Economic evaluation of sectoral emission reduction objectives for climate change. Top-down analysis of greenhouse gas emission reduction possibilities in the EU. Final Report, TRN: GR04CC101, National Technical University of Athens NTUA, Athens, Greece.
[4] Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. doi:10.1016/j.cemconres.2018.03.015.
[5] Amran, M., Makul, N., Fediuk, R., Lee, Y. H., Vatin, N. I., Lee, Y. Y., & Mohammed, K. (2022). Global carbon recoverability experiences from the cement industry. Case Studies in Construction Materials, 17, 1439. doi:10.1016/j.cscm.2022.e01439.
[6] Hussein, A. O., Ghayyib, R. J., Radi, F. M., Jawad, Z. F., Nasr, M. S., & Shubbar, A. (2024). Recycling of Eggshell Powder and Wheat Straw Ash as Cement Replacement Materials in Mortar. Civil Engineering Journal, 10(1), 83–99. doi:10.28991/CEJ-2024-010-01-05.
[7] Andrew, R. M. (2019). Global CO2 emissions from cement production, 1928-2018. Earth System Science Data, 11(4), 1675–1710. doi:10.5194/essd-11-1675-2019.
[8] Cristelo, N., Segadães, L., Coelho, J., Chaves, B., Sousa, N. R., & de Lurdes Lopes, M. (2020). Recycling municipal solid waste incineration slag and fly ash as precursors in low-range alkaline cements. Waste Management, 104, 60–73. doi:10.1016/j.wasman.2020.01.013.
[9] Gartner, E., & Sui, T. (2018). Alternative cement clinkers. Cement and Concrete Research, 114, 27–39. doi:10.1016/j.cemconres.2017.02.002.
[10] Li, C., Gong, X., Cui, S., Wang, Z., Zheng, Y., & Chi, B. (2011). CO2 emissions due to cement manufacture. Materials Science Forum, 685, 181–187. doi:10.4028/www.scientific.net/MSF.685.181.
[11] Maji, I. K., & Adamu, S. (2021). The impact of renewable energy consumption on sectoral environmental quality in Nigeria. Cleaner Environmental Systems, 2, 100009. doi:10.1016/j.cesys.2021.100009.
[12] Peng, J., Huang, L., Zhao, Y., Chen, P., Zeng, L., & Zheng, W. (2013). Modeling of carbon dioxide measurement on cement plants. Advanced Materials Research, 610–613, 2120–2128. doi:10.4028/www.scientific.net/AMR.610-613.2120.
[13] Cheng, D., Reiner, D. M., Yang, F., Cui, C., Meng, J., Shan, Y., Liu, Y., Tao, S., & Guan, D. (2023). Projecting future carbon emissions from cement production in developing countries. Nature Communications, 14(1), 8213. doi:10.1038/s41467-023-43660-x.
[14] Khaiyum, M. Z., Sarker, S., & Kabir, G. (2023). Evaluation of Carbon Emission Factors in the Cement Industry: An Emerging Economy Context. Sustainability (Switzerland), 15(21), 15407. doi:10.3390/su152115407.
[15] Ragab, A. E.-R., Younis, S., & Mohamed Moawad, M. S. (2022). Green Building: Use of Pozzolanic Material to Reduce CO2 Emissions and Energy Conservation in the Production of Composite Pozzolanic Cement. American Journal of Engineering and Applied Sciences, 15(2), 132–139. doi:10.3844/ajeassp.2022.132.139.
[16] Marandi, N., & Shirzad, S. (2025). Sustainable cement and concrete technologies: a review of materials and processes for carbon reduction. Innovative Infrastructure Solutions, 10(9), 408. doi:10.1007/s41062-025-02213-5.
[17] Flower, D. J. M., & Sanjayan, J. G. (2007). Greenhouse gas emissions due to concrete manufacture. International Journal of Life Cycle Assessment, 12(5), 282–288. doi:10.1065/lca2007.05.327.
[18] Jhatial, A. A., Nováková, I., & Gjerløw, E. (2023). A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods. Buildings, 13(2), 526. doi:10.3390/buildings13020526.
[19] Mohsen, M. O., Aburumman, M. O., Al Diseet, M. M., Taha, R., Abdel-Jaber, M., Senouci, A., & Abu Taqa, A. (2023). Fly Ash and Natural Pozzolana Impacts on Sustainable Concrete Permeability and Mechanical Properties. Buildings, 13(8), 1927. doi:10.3390/buildings13081927.
[20] Abed Shnait, M., & Izzet, A. F. (2024). Flexural Behavior of Reinforced Concrete Beams with Steel-Plate Reinforced Vertical Opening. Civil Engineering Journal, 10(9), 2820–2838. doi:10.28991/CEJ-2024-010-09-04.
[21] Etxebarria, I., Veneranda, M., Costantini, I., Prieto-Taboada, N., Larrañaga, A., Marieta, C., De Nigris, B., Martellone, A., Amoretti, V., Arana, G., Madariaga, J. M., & Castro, K. (2023). Testing the volcanic material burying Pompeii as pozzolanic component for compatible conservation mortars. Case Studies in Construction Materials, 18, 2194. doi:10.1016/j.cscm.2023.e02194.
[22] Marra, F., Danti, A., & Gaeta, M. (2015). The volcanic aggregate of ancient Roman mortars from the Capitoline Hill: Petrographic criteria for identification of Rome’s “pozzolans” and historical implications. Journal of Volcanology and Geothermal Research, 308, 113–126. doi:10.1016/j.jvolgeores.2015.10.007.
[23] Seymour, L. M., Maragh, J., Sabatini, P., Tommaso, M. Di, Weaver, J. C., & Masic, A. (2023). Hot mixing: Mechanistic insights into the durability of ancient Roman concrete. Science Advances, 9(1), 1602. doi:10.1126/sciadv.add1602.
[24] Karamyan, H., Sahakov, A., Aperyan, A., Badalyan, M., & Baghdagyulyan, A. (2023). Analyses of the Structure Formation of Constructional Complex Mixtures Developed on a Local Raw Basis and Their Behaviour in a Chemically Aggressive Environment. Key Engineering Materials, 958, 201–207. doi:10.4028/p-hNy5Or.
[25] Qaramyan, H. (2022). Development of dry sand-lime new multicomponent mortars into the historical cultural monuments applied on local raw basis. Key Engineering Materials, 906 KEM, 53–58. doi:10.4028/www.scientific.net/KEM.906.53.
[26] Amsalu Fode, T., Chande Jande, Y. A., & Kivevele, T. (2024). Modeling and Optimization of Sisal Fiber Degradation Treatment by Calcined Bentonite for Cement Composite Materials. Journal of Natural Fibers, 21(1), 2408632. doi:10.1080/15440478.2024.2408632.
[27] Mehta, P.K. and Monteiro, P.J.M. (2006) Concrete: Microstructure, Properties, and Materials (3rd Ed.). McGraw-Hill, New York, United States.
[28] Shao, W., Cao, R., Zhang, W., & Shi, D. (2025). Experimental study on the compressive mechanical behavior and constitutive model of basalt fiber reinforced coral concrete. Construction and Building Materials, 489, 142284. doi:10.1016/j.conbuildmat.2025.142284.
[29] Zheng, H., Zhang, W., Li, B., Zhu, J., Wang, C., Song, G., Wu, G., Yang, X., Huang, Y., & Ma, L. (2022). Recent advances of interphases in carbon fiber-reinforced polymer composites: A review. Composites Part B: Engineering, 233, 109639. doi:10.1016/j.compositesb.2022.109639.
[30] Zhang, F., Lu, Z., & Wang, D. (2024). Working and mechanical properties of waste glass fiber reinforced self-compacting recycled concrete. Construction and Building Materials, 439, 137172. doi:10.1016/j.conbuildmat.2024.137172.
[31] Khandelwal, S., & Rhee, K. Y. (2020). Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Composites Part B: Engineering, 192, 108011. doi:10.1016/j.compositesb.2020.108011.
[32] Branston, J., Das, S., Kenno, S. Y., & Taylor, C. (2016). Mechanical behaviour of basalt fibre reinforced concrete. Construction and Building Materials, 124, 878–886. doi:10.1016/j.conbuildmat.2016.08.009.
[33] Ou, Y., Zhu, D., & Li, H. (2016). Strain Rate and Temperature Effects on the Dynamic Tensile Behaviors of Basalt Fiber Bundles and Reinforced Polymer Composite. Journal of Materials in Civil Engineering, 28(10), 04016101. doi:10.1061/(asce)mt.1943-5533.0001615.
[34] Iorio, M., Santarelli, M. L., González-Gaitano, G., & González-Benito, J. (2018). Surface modification and characterization of basalt fibers as potential reinforcement of concretes. Applied Surface Science, 427(Part A), 1248–1256. doi:10.1016/j.apsusc.2017.08.196.
[35] Yang, W., Liu, H., & Wang, H. (2024). Experimental study on mechanical properties of basalt fiber reinforced nano-SiO2 concrete after high temperature. Frontiers in Materials, 11, 1415144. doi:10.3389/fmats.2024.1415144.
[36] Zhou, H., Jia, B., Huang, H., & Mou, Y. (2020). Experimental study on basic mechanical properties of basalt fiber reinforced concrete. Materials, 13(6). doi:10.3390/ma13061362.
[37] Karapetyan, A., Badalyan, M., Arzumanyan, A., Muradyan, N., & Grigoryan, A. (2023). Study of Physical and Mechanical Properties of Fiber Concretes with Different Compositions. The 4th International Electronic Conference on Applied Sciences, 224. doi:10.3390/asec2023-15930.
[38] Wang, W., Zhang, Y., Mo, Z., Chouw, N., Jayaraman, K., & Xu, Z. dong. (2023). A critical review on the properties of natural fibre reinforced concrete composites subjected to impact loading. Journal of Building Engineering, 77, 107497. doi:10.1016/j.jobe.2023.107497.
[39] Pinheiro, V. D., Abreu, R. F. de, Alexandre, J., Xavier, G. de C., Marvila, M. T., & de Azevedo, A. R. G. (2024). Pozzolanic Potential of Calcined Clays at Medium Temperature as Supplementary Cementitious Material. Sustainability (Switzerland), 16(17), 7508. doi:10.3390/su16177508.
[40] Balykov, A. S., Nizina, T. A., Volodin, V. V., & Kyashkin, V. M. (2021). Effects of Calcination Temperature and Time on the Physical-Chemical Efficiency of Thermally Activated Clays in Cement Systems. Materials Science Forum, 1017, 61–70. doi:10.4028/www.scientific.net/msf.1017.61.
[41] Akbulut, Z. F., Kuzielová, E., Tawfik, T. A., Smarzewski, P., & Guler, S. (2024). Synergistic Effects of Polypropylene Fibers and Silica Fume on Structural Lightweight Concrete: Analysis of Workability, Thermal Conductivity, and Strength Properties. Materials, 17(20), 5042. doi:10.3390/ma17205042.
[42] Gu, L., Liu, Y., Zeng, J., Zhang, Z., Pham, P. N., Liu, C., & Zhuge, Y. (2024). The synergistic effects of fibres on mechanical properties of recycled aggregate concrete: A comprehensive review. Construction and Building Materials, 436, 137011. doi:10.1016/j.conbuildmat.2024.137011.
[43] Shainova, R. S., Karamyan, H. H., Sahakyan, A. T., Avagyan, M. A., & Aperyan, A. J. (2024). Development of complex mortars based on bentonite clay. XIII International Conference on Chemistry for Young Scientists, 2-6 September, 2024, St Petersburg, Russia.
[44] ASTM C618-17a. (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, Pennsylvania, United States. doi:10.1520/C0618-17A.
[45] GOST 31108-2020. (2019). Cements for General Construction. Technical Conditions. Publishing House Standard, Moscow, Russia.
[46] EN 196-1-2002. (2002). Methods of testing cement. Part 1. Determination of strength. European Committee for Standardization, Brussels, Belgium.
[47] EN 196-2-2002. (2002). Methods of testing cement - Part 2: Chemical analysis of cement. European Committee for Standardization, Brussels, Belgium.
[48] ASTM C230/C230M-98E1. (2013). Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0230_C0230M-98E01.
[49] Castro-Cabrera, I., Chénier, A., Blanchard, A., Gérard, J. F., Lortie, F., & Rumeau-Duchet, J. (2025). Methodical approach to interface design: Role of sizing in the micro-mechanical performance and durability of basalt fibers-based composites. Materialia, 42, 102467. doi:10.1016/j.mtla.2025.102467.
[50] Qin, X., Shen, A., & Guo, Y. (2016). Experimental study on road performance of basalt fiber reinforced bitumen mastics. Jianzhu Cailiao Xuebao/Journal of Building Materials, 19(4), 659–664. doi:10.3969/j.issn.1007-9629.2016.04.009.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















