Recycled Steel Fiber-Reinforced Mortar with Embedded Structural Health Monitoring for Sustainable Construction
Downloads
The study examines the mechanical and microstructural performance of eco-friendly mortar mixes that incorporate Recycled Steel Fibers (RSF) derived from waste tires. Four mortar formulations with varying RSF content (0%, 0.5%, 1%, and 1.5% by volume) were evaluated for compressive strength, flexural strength, and electrical conductivity. Experimental results revealed that a 1.5% RSF mixture exhibited remarkable improvements in flexural strength, achieving a 67% increase compared to the control formulation while delivering a 12.6% enhancement in compressive strength. However, the 0.5% RSF mix showed reduced performance due to poor fiber dispersion, underscoring the importance of proper fiber distribution. Specific resistance decreased with RSF addition, indicating enhanced electrical conductivity, with the lowest specific resistance observed at 0.5% RSF on day 28. An empirical model using a fiber reinforcing index (ξ) was developed to predict strength behavior. A quadratic relationship was found to best describe compressive strength gains, while a linear model effectively captured the flexural strength trend. The models were calibrated using both experimental data and literature values, achieving high predictive accuracy. Electrical conductivity increased with RSF addition, and the slope of the specific resistance during loading correlated strongly with mechanical strength, highlighting its potential as a non-destructive structural health monitoring (SHM) indicator. SEM analysis confirmed improved matrix integrity and fiber–matrix interaction at the optimal 1% RSF content, which balanced strength gains and sensing capability. The study establishes RSF as a viable sustainable alternative to virgin steel fibers, providing both mechanical enhancements and self-sensing properties. This novel integration of electrical monitoring with mechanical testing and modeling provides new insights into recycled-fiber composites by enabling simultaneous enhancement of structural performance and real-time damage monitoring.
Downloads
[1] Liu, G., Claramunt, J., Hunger, M., Tošić, N., & de la Fuente, A. (2024). Effect of coarse recycled aggregate with embedded fibres on the mechanical properties and microstructure of polypropylene fibre-reinforced concrete. Materials and Structures, 57(10), 241. doi:10.1617/s11527-024-02527-3.
[2] Chakraborty, S., & Subramaniam, K. V. L. (2023). Evaluation of cracking and cohesive fracture response in recycled aggregate concrete. Materials and Structures, 56(7), 130. doi:10.1617/s11527-023-02193-x.
[3] Anike, E. E., Saidani, M., Ganjian, E., Tyrer, M., & Olubanwo, A. O. (2020). Evaluation of conventional and equivalent mortar volume mix design methods for recycled aggregate concrete. Materials and Structures, 53(1), 22. doi:10.1617/s11527-020-1457-3.
[4] Marzouk, O. Y., Dheilly, R. M., & Queneudec, M. (2007). Valorization of post-consumer waste plastic in cementitious concrete composites. Waste Management, 27(2), 310–318. doi:10.1016/j.wasman.2006.03.012.
[5] Zhao, Z., Xiao, F., & Amirkhanian, S. (2020). Recent applications of waste solid materials in pavement engineering. Waste Management, 108, 78–105. doi:10.1016/j.wasman.2020.04.024.
[6] Bahij, S., Omary, S., Feugeas, F., & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management, 113, 157–175. doi:10.1016/j.wasman.2020.05.048.
[7] Onuaguluchi, O., & Banthia, N. (2018). Scrap tire steel fiber as a substitute for commercial steel fiber in cement mortar: Engineering properties and cost-benefit analyses. Resources, Conservation and Recycling, 134, 248–256. doi:10.1016/j.resconrec.2018.03.014.
[8] Abdolpour, H., Niewiadomski, P., Sadowski, Ł., & Kwiecień, A. (2022). Engineering of ultra-high performance self-compacting mortar with recycled steel fibres extracted from waste tires. Archives of Civil and Mechanical Engineering, 22(4), 175. doi:10.1007/s43452-022-00496-4.
[9] Belli, A., Mobili, A., Bellezze, T., & Tittarelli, F. (2020). Commercial and recycled carbon/steel fibers for fiber-reinforced cement mortars with high electrical conductivity. Cement and Concrete Composites, 109, 103569. doi:10.1016/j.cemconcomp.2020.103569.
[10] Domski, J., Katzer, J., Zakrzewski, M., & Ponikiewski, T. (2017). Comparison of the mechanical characteristics of engineered and waste steel fiber used as reinforcement for concrete. Journal of Cleaner Production, 158, 18–28. doi:10.1016/j.jclepro.2017.04.165.
[11] Carrillo, J., Lizarazo-Marriaga, J., & Lamus, F. (2020). Properties of Steel Fiber Reinforced Concrete Using Either Industrial or Recycled Fibers from Waste Tires. Fibers and Polymers, 21(9), 2055–2067. doi:10.1007/s12221-020-1076-1.
[12] Aiello, M. A., Leuzzi, F., Centonze, G., & Maffezzoli, A. (2009). Use of steel fibres recovered from waste tyres as reinforcement in concrete: Pull-out behaviour, compressive and flexural strength. Waste Management, 29(6), 1960–1970. doi:10.1016/j.wasman.2008.12.002.
[13] Centonze, G., Leone, M., & Aiello, M. A. (2012). Steel fibers from waste tires as reinforcement in concrete: A mechanical characterization. Construction and Building Materials, 36, 46–57. doi:10.1016/j.conbuildmat.2012.04.088.
[14] Liew, K. M., & Akbar, A. (2020). The recent progress of recycled steel fiber reinforced concrete. Construction and Building Materials, 232, 117232. doi:10.1016/j.conbuildmat.2019.117232.
[15] Zia, A., Pu, Z., Holly, I., Umar, T., Tariq, M. A. U. R., & Sufian, M. (2022). A Comprehensive Review of Incorporating Steel Fibers of Waste Tires in Cement Composites and Its Applications. Materials, 15(21), 7420. doi:10.3390/ma15217420.
[16] Zhang, P., Wang, C., Wu, C., Guo, Y., Li, Y., & Guo, J. (2022). A review on the properties of concrete reinforced with recycled steel fiber from waste tires. Reviews on Advanced Materials Science, 61(1), 276–291. doi:10.1515/rams-2022-0029.
[17] Barros, J. A. O., Frazão, C., Caggiano, A., Folino, P., Martinelli, E., Xargay, H., Zamanzadeh, Z., & Lourenço, L. (2017). Cementitious Composites Reinforced with Recycled Fibres. Recent Advances on Green Concrete for Structural Purposes. Research for Development. Springer, Cham, Switzerland. doi:10.1007/978-3-319-56797-6_8.
[18] Amin, M. N., Khan, K., Nazar, S., & Deifalla, A. F. (2023). Application of waste recycle tire steel fibers as a construction material in concrete. Reviews on Advanced Materials Science, 62(1), 20220319. doi:10.1515/rams-2022-0319.
[19] Alsaif, A., & Alharbi, Y. R. (2022). Strength, durability and shrinkage behaviours of steel fiber reinforced rubberized concrete. Construction and Building Materials, 345, 128295. doi:10.1016/j.conbuildmat.2022.128295.
[20] Mehmandari, T. A., Shokouhian, M., Imani, M., Tee, K. F., & Fahimifar, A. (2025). Split Tensile Behavior of Recycled Steel Fiber-Reinforced Concrete. ACI Materials Journal, 122(2), 15–28. doi:10.14359/51744375.
[21] Meddah, M. S., & Bencheikh, M. (2009). Properties of concrete reinforced with different kinds of industrial waste fibre materials. Construction and Building Materials, 23(10), 3196–3205. doi:10.1016/j.conbuildmat.2009.06.017.
[22] Samarakoon, S. M. S. M. K., Ruben, P., Wie Pedersen, J., & Evangelista, L. (2019). Mechanical performance of concrete made of steel fibers from tire waste. Case Studies in Construction Materials, 11, 259. doi:10.1016/j.cscm.2019.e00259.
[23] Balaguru, P., & Najm, H. (2004). High-performance fiber-reinforced concrete mixture proportions with high fiber volume fractions. Materials Journal, 101(4), 281-286. doi:10.14359/13361.
[24] Khalel, H. H. Z., Khan, M., Starr, A., Sadawi, N., Mohamed, O. A., Khalil, A., & Esaker, M. (2025). Parametric study for optimizing fiber-reinforced concrete properties. Structural Concrete, 26(1), 88–110. doi:10.1002/suco.202300509.
[25] Soltanzadeh, F., Behbahani, A. E., Hosseinmostofi, K., & Teixeira, C. A. (2022). Assessment of the Sustainability of Fibre-Reinforced Concrete by Considering Both Environmental and Mechanical Properties. Sustainability (Switzerland), 14(10), 6347. doi:10.3390/su14106347.
[26] Soulioti, D. V., Barkoula, N. M., Paipetis, A., & Matikas, T. E. (2011). Effects of Fibre Geometry and Volume Fraction on the Flexural Behaviour of Steel‐Fibre Reinforced Concrete. Strain, 47, e535-e541. doi:10.1111/j.1475-1305.2009.00652.x.
[27] Centonze, G., Leone, M., Micelli, F., Colonna, D., & Aiello, M. A. (2016). Concrete reinforced with recycled steel fibers from end of life tires: Mix-design and application. Key Engineering Materials, 711, 224-231. doi:10.4028/www.scientific.net/KEM.711.224.
[28] Papakonstantinou, C. G., & Tobolski, M. J. (2006). Use of waste tire steel beads in Portland cement concrete. Cement and Concrete Research, 36(9), 1686–1691. doi:10.1016/j.cemconres.2006.05.015.
[29] Zeybek, Ö., Özkılıç, Y. O., Çelik, A. İ., Deifalla, A. F., Ahmad, M., & Sabri Sabri, M. M. (2022). Performance evaluation of fiber-reinforced concrete produced with steel fibers extracted from waste tire. Frontiers in Materials, 9. doi:10.3389/fmats.2022.1057128.
[30] Chen, M., Si, H., Fan, X., Xuan, Y., & Zhang, M. (2022). Dynamic compressive behaviour of recycled tyre steel fibre reinforced concrete. Construction and Building Materials, 316, 125896. doi:10.1016/j.conbuildmat.2021.125896.
[31] Frazão, C. M. V., Barros, J. A. B., & Bogas, J. A. (2019). Durability of recycled steel fiber reinforced concrete in chloride environment. Fibers, 7(12), 111. doi:10.3390/fib7120111.
[32] Revuelta, D., Carballosa, P., García Calvo, J. L., & Pedrosa, F. (2021). Residual strength and drying behavior of concrete reinforced with recycled steel fiber from tires. Materials, 14(20), 6111. doi:10.3390/ma14206111.
[33] Qin, X., & Kaewunruen, S. (2022). Environment-friendly recycled steel fibre reinforced concrete. Construction and Building Materials, 327, 126967. doi:10.1016/j.conbuildmat.2022.126967.
[34] Li, G., Garrick, G., Eggers, J., Abadie, C., Stubblefield, M. A., & Pang, S. S. (2004). Waste tire fiber modified concrete. Composites Part B: Engineering, 35(4), 305–312. doi:10.1016/j.compositesb.2004.01.002.
[35] Mastali, M., & Dalvand, A. (2017). Fresh and Hardened Properties of Self-Compacting Concrete Reinforced with Hybrid Recycled Steel–Polypropylene Fiber. Journal of Materials in Civil Engineering, 29(6), 04017012. doi:10.1061/(asce)mt.1943-5533.0001851.
[36] Martinelli, E., Caggiano, A., & Xargay, H. (2015). An experimental study on the post-cracking behaviour of Hybrid Industrial/Recycled Steel Fibre-Reinforced Concrete. Construction and Building Materials, 94, 290–298. doi:10.1016/j.conbuildmat.2015.07.007.
[37] Pilakoutas, K., Neocleous, K., & Tlemat, H. (2004). Reuse of tyre steel fibres as concrete reinforcement. Engineering Sustainability, 157(3), 131–138. doi:10.1680/ensu.157.3.131.48644.
[38] Albano, C., Camacho, N., Reyes, J., Feliu, J. L., & Hernández, M. (2005). Influence of scrap rubber addition to Portland I concrete composites: Destructive and non-destructive testing. Composite Structures, 71(3–4), 439–446. doi:10.1016/j.compstruct.2005.09.037.
[39] Rashid, K., & Balouch, N. (2017). Influence of steel fibers extracted from waste tires on shear behavior of reinforced concrete beams. Structural Concrete, 18(4), 589–596. doi:10.1002/suco.201600194.
[40] Caggiano, A., Gambarelli, S., Martinelli, E., Nisticò, N., & Pepe, M. (2016). Experimental characterization of the post-cracking response in Hybrid Steel/Polypropylene Fiber-Reinforced Concrete. Construction and Building Materials, 125, 1035–1043. doi:10.1016/j.conbuildmat.2016.08.068.
[41] Majeed Abed, Z., Khalil, W. I., & Ahmed, H. K. (2024). Tire wastes and durability: the influence of crumb rubber and recycled steel fibre on properties of roller compacted concrete. International Journal of Pavement Engineering, 25(1), 2372628. doi:10.1080/10298436.2024.2372628.
[42] Romero, A. J., & Moustafa, M. A. (2025). Effect of recycled tires steel fibers characteristics on crack behavior and mechanical properties of scalable ultra-economical UHPC. Journal of Building Engineering, 99, 111582. doi:10.1016/j.jobe.2024.111582.
[43] Abdulkarim, A., Riahi, H. T., & Ataei, A. (2025). Comparative study of mechanical properties of one-part alkali-activated slag concrete using deformed and recycled tire steel fibers. Case Studies in Construction Materials, 22, 4124. doi:10.1016/j.cscm.2024.e04124.
[44] Doğruyol, M., Ayhan, E., & Karaşin, A. (2024). Effect of waste steel fiber use on concrete behavior at high temperature. Case Studies in Construction Materials, 20, 3051. doi:10.1016/j.cscm.2024.e03051.
[45] Frazão, C., Barros, J., Bogas, J. A., García-Cortés, V., & Valente, T. (2022). Technical and environmental potentialities of recycled steel fiber reinforced concrete for structural applications. Journal of Building Engineering, 45, 103579. doi:10.1016/j.jobe.2021.103579.
[46] Mastali, M., & Dalvand, A. (2016). Use of silica fume and recycled steel fibers in self-compacting concrete (SCC). Construction and Building Materials, 125, 196–209. doi:10.1016/j.conbuildmat.2016.08.046.
[47] Aïtcin, P.-C. (2016). The importance of the water–cement and water–binder ratios. Science and Technology of Concrete Admixtures, 3–13, Woodhead Publishing, Sawston, United Kingdom. doi:10.1016/b978-0-08-100693-1.00001-1.
[48] Shi, X., Brescia-Norambuena, L., Grasley, Z., & Hogancamp, J. (2020). Fracture Properties and Restrained Shrinkage Cracking Resistance of Cement Mortar Reinforced by Recycled Steel Fiber from Scrap Tires. Transportation Research Record, 2674(8), 581–590. doi:10.1177/0361198120924407.
[49] ASTM C305-13. (2014). Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International, Pennsylvania, United States. doi:10.1520/C0305-13
[50] ASTM C109/C109M-20b. (2021). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). ASTM International, Pennsylvania, United States. doi:10.1520/C0109_C0109M-20B.
[51] ASTM C348-21. (2021). Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International, Pennsylvania, United States. doi:10.1520/C0348-21.
[52] ASTM C150/C150M-22. (2024). Standard Specification for Portland Cement. ASTM International, Pennsylvania, United States. doi:10.1520/C0150_C0150M-22.
[53] ASTM C778-13. (2017). Standard Specification for Standard Sand. ASTM International, Pennsylvania, United States. doi:10.1520/C0778-13.
[54] Turk, K., Cicek, N., Katlav, M., Donmez, I., & Turgut, P. (2023). Electrical conductivity and heating performance of hybrid steel fiber-reinforced SCC: The role of high-volume fiber and micro fiber length. Journal of Building Engineering, 76, 107392. doi:10.1016/j.jobe.2023.107392.
[55] Wen, S., & Chung, D. D. L. (2007). Double percolation in the electrical conduction in carbon fiber reinforced cement-based materials. Carbon, 45(2), 263–267. doi:10.1016/j.carbon.2006.09.031.
[56] Ou, Y.-C., Tsai, M.-S., Liu, K.-Y., & Chang, K.-C. (2012). Compressive Behavior of Steel-Fiber-Reinforced Concrete with a High Reinforcing Index. Journal of Materials in Civil Engineering, 24(2), 207–215. doi:10.1061/(asce)mt.1943-5533.0000372.
[57] Nzambi, A. K. L. L., Ntuku, J. B., & de Oliveira, D. R. C. (2022). Empirical equations for flexural residual strengths in concrete with low volumetric fractions of hook-end steel fiber. Engineering Reports, 4(5), e12490. doi:10.1002/eng2.12490.
[58] Leone, M., Centonze, G., Colonna, D., Micelli, F., & Aiello, M. A. (2016). Experimental Study on Bond Behavior in Fiber-Reinforced Concrete with Low Content of Recycled Steel Fiber. Journal of Materials in Civil Engineering, 28(9), 04016068. doi:10.1061/(asce)mt.1943-5533.0001534.
[59] Skarżyński, Ł., & Suchorzewski, J. (2018). Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography. Construction and Building Materials, 183, 283–299. doi:10.1016/j.conbuildmat.2018.06.182.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














