Passive Earth Pressure Analysis for Unsaturated Soils on Retaining Walls Incorporating Arching Effect
Downloads
Retaining structures in geological and geotechnical engineering are often embedded in unsaturated soil strata. Conventional methods for calculating earth pressure in unsaturated soils typically ignore the rotation of principal stresses in the backfill, a phenomenonknown as the soil arching effect. This study presents a novel analytical framework for determining the passive earth pressure in unsaturated soils that explicitly incorporates this arching effect. The proposed model accounts for both principal stress rotation and the hydro-mechanical coupling between matric suction and soil stress under groundwater influence. Based on the shear strength criterion for unsaturated soils, the model assumes a circular-arc trajectory for the rotating major principal stress, and hydrostatic seepage with matric suction distributed linearly with depth. Using a coordinate axis translation technique, quantitative relationships among lateral earth pressure, interlayer shear stress, and vertical stress are established. The force equilibrium equations for a horizontal differential soil element are then solved to derive closed-form expressions for the passive earth pressure distribution and resultant force. Validation against physical model tests and numerical simulations confirms the model’s accuracy and demonstrates its superiority over the extended Rankine theory, which systematically underestimates passive resistance. Parametric studies highlight the influences of groundwater depth, initial matric suction, and soil strength parameters. The proposed framework offers a more realistic and mechanically sound basis for the design of retaining structures in unsaturated soil environments.
Downloads
[1] Vann, J. D., & Houston, S. L. (2021). Field Soil Suction Profiles for Expansive Soil. Journal of Geotechnical and Geoenvironmental Engineering, 147(9), 4021080. doi:10.1061/(asce)gt.1943-5606.0002570.
[2] Lu, N., & Griffiths, D. V. (2004). Profiles of Steady-State Suction Stress in Unsaturated Soils. Journal of Geotechnical and Geoenvironmental Engineering, 130(10), 1063–1076. doi:10.1061/(asce)1090-0241(2004)130:10(1063).
[3] Wang, Z. Y., & Lin, H. (2025). Passive earth pressure of narrow backfill considering seismic-unsaturated seepage multi-field coupling effect. Journal of Central South University, 32(4), 1447–1467. doi:10.1007/s11771-025-5867-9.
[4] Fredlund, D. G., & Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172759.
[5] Lu, N., & Likos, W.J. (2004) Unsaturated Soil Mechanics. John Wiley & Sons, Hoboken, United States.
[6] Vo, T., & Russell, A. R. (2017). Interaction between Retaining Walls and Unsaturated Soils in Experiments and Using Slip Line Theory. Journal of Engineering Mechanics, 143(4), 4016120. doi:10.1061/(asce)em.1943-7889.0001187.
[7] Deng, B., & Yang, M. (2019). Analysis of Passive Earth Pressure for Unsaturated Retaining Structures. International Journal of Geomechanics, 19(12), 6019016. doi:10.1061/(asce)gm.1943-5622.0001518.
[8] Zhao, X., Fan, H., & Xu, J. (2024). Stability Analysis for Three-Dimensional Earth-Retaining Structures Subjected to Rainfall Based on a Modified Green–Ampt Model. International Journal of Geomechanics, 24(1), 4023244. doi:10.1061/ijgnai.gmeng-8304.
[9] Sarkar, S., Shingwekar, E., & Chakraborty, M. (2023). Revisiting Lateral Earth Pressures for Retaining Wall Backfilled with Unsaturated Soil. Geotechnical and Geological Engineering, 41(7), 3985–4006. doi:10.1007/s10706-023-02500-x.
[10] Fang, W., Cui, Y., & Liu, S. (2025). Nonlinear Rankine pressure of unsaturated soil under transient infiltration. Canadian Geotechnical Journal, 62, 1–16. doi:10.1139/cgj-2024-0408.
[11] Tracy, F. T., & Vahedifard, F. (2025). Analytical solutions for coupled hydromechanical modeling of lateral earth pressures in unsaturated soils. Computers and Geotechnics, 179, 107038. doi:10.1016/j.compgeo.2024.107038.
[12] Zhang, Z. L., Zhu, J. Q., & Yang, X. L. (2023). Three-Dimensional Active Earth Pressures for Unsaturated Backfills with Cracks Considering Steady Seepage. International Journal of Geomechanics, 23(2), 4022270. doi:10.1061/(asce)gm.1943-5622.0002648.
[13] Liu, S., Yuan, Z., Xiao, Y., Fang, Q., & Liu, H. (2025). Profiles of suction stress of layered soils under infiltration conditions and its applications. European Journal of Environmental and Civil Engineering, 29(1), 64-88. doi:10.1080/19648189.2024.2368146.
[14] Handy, R. L. (1985). The Arch in Soil Arching. Journal of Geotechnical Engineering, 111(3), 302–318. doi:10.1061/(asce)0733-9410(1985)111:3(302).
[15] Khosravi, M. H., Pipatpongsa, T., & Takemura, J. (2013). Experimental analysis of earth pressure against rigid retaining walls under translation mode. Géotechnique, 63(12), 1020–1028. doi:10.1680/geot.12.p.021.
[16] Yang, K., Li, Z., Chen, Y., Yang, X., & Lin, W. (2023). Soil Arching–Induced Lateral Earth Pressure Redistribution on the Retaining Wall in a Multistrutted Excavation in Soft Soil. Journal of Geotechnical and Geoenvironmental Engineering, 149(10), 5023004. doi:10.1061/jggefk.gteng-11032.
[17] Perozzi, D., & Puzrin, A. M. (2024). Experimental Study of the Earth Pressure Evolution on a Model Wall Rotating about Its Base. Journal of Geotechnical and Geoenvironmental Engineering, 150(7), 4024048. doi:10.1061/jggefk.gteng-12163.
[18] Khosravi, M. H., Bahaaddini, M., Kargar, A. R., & Pipatpongsa, T. (2018). Soil Arching Behind Retaining Walls under Active Translation Mode: Review and New Insights. International Journal of Mining and Geo-Engineering, 52(2), 131–140. doi:10.22059/ijmge.2018.264011.594754.
[19] Jiang, J., Zhao, Q., Zhu, S., Peng, S., & Wu, Y. (2021). Arching effect and displacement on theoretical estimation for lateral force acting on retaining wall. Natural Hazards, 108(3), 2991–3019. doi:10.1007/s11069-021-04810-w.
[20] Lai, F., Zhang, N., Liu, S., & Yang, D. (2024). A generalised analytical framework for active earth pressure on retaining walls with narrow soil. Géotechnique, 74(11), 1127–1142. doi:10.1680/jgeot.21.00305.
[21] Deng, B., Long, W., He, Z., & Gao, Y. (2025). Semi-Analytical Solution for Passive Earth Pressure in Unsaturated Narrow Soils Behind Retaining Walls with a Log-Spiral Failure Surface Based on the Principal Stress Trajectory Method. International Journal for Numerical and Analytical Methods in Geomechanics, 49(10), 2432–2454. doi:10.1002/nag.3995.
[22] Cavalcante, A. L. B., & Zornberg, J. G. (2017). Efficient Approach to Solving Transient Unsaturated Flow Problems. I: Analytical Solutions. International Journal of Geomechanics, 17(7), 04017013. doi:10.1061/(asce)gm.1943-5622.0000875.
[23] Iiyama, I. (2016). Differences between field-monitored and laboratory-measured soil moisture characteristics. Soil Science and Plant Nutrition, 62(5–6), 416–422. doi:10.1080/00380768.2016.1242367.
[24] van Genuchten, M. T. (1980). A Closed‐form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. doi:10.2136/sssaj1980.03615995004400050002x.
[25] Vanapalli, S. K., & Fredlund, D. G. (2000). Comparison of Different Procedures to Predict Unsaturated Soil Shear Strength. Advances in Unsaturated Geotechnics, 195–209. doi:10.1061/40510(287)13.
[26] Terzaghi, K. (1943). Theoretical Soil Mechanics. John Wiley & Sons, Hoboken, United States. doi:10.1002/9780470172766.
[27] Iglesia, G. R., Einstein, H. H., & Whitman, R. V. (2014). Investigation of Soil Arching with Centrifuge Tests. Journal of Geotechnical and Geoenvironmental Engineering, 140(2), 4013005. doi:10.1061/(asce)gt.1943-5606.0000998.
[28] Han, J., Wang, F., Al-Naddaf, M., & Xu, C. (2017). Progressive Development of Two-Dimensional Soil Arching with Displacement. International Journal of Geomechanics, 17(12), 4017112. doi:10.1061/(asce)gm.1943-5622.0001025.
[29] Tao, F. J., Xu, Y., Zhang, Z., Ye, G. B., Han, J., Cheng, B. N., Liu, L., & Yang, T. L. (2023). Progressive development of soil arching based on multiple-trapdoor tests. Acta Geotechnica, 18(6), 3061–3076. doi:10.1007/s11440-022-01757-5.
[30] Paik, K. H., & Salgado, R. (2003). Estimation of active earth pressure against rigid retaining walls considering arching effects. Geotechnique, 53(7), 643–653. doi:10.1680/geot.2003.53.7.643.
[31] Goel, S., & Patra, N. R. (2008). Effect of Arching on Active Earth Pressure for Rigid Retaining Walls Considering Translation Mode. International Journal of Geomechanics, 8(2), 123–133. doi:10.1061/(asce)1532-3641(2008)8:2(123).
[32] Cong, L., Yang, X. yu, Zhang, B. chang, & Xiong, W. (2022). Estimation of Active Earth Pressure for Limited Width of Soil Using Nonlinear Failure Criterion. Geotechnical and Geological Engineering, 40(9), 4837–4846. doi:10.1007/s10706-022-02187-6.
[33] Rui, R., Ye, Y., Han, J., Zhang, L., & Zhai, Y. (2020). Experimental and Theoretical Investigations on Active Earth Pressure Distributions behind Rigid Retaining Walls with Narrow Backfill under a Translational Mode. International Journal of Geomechanics, 20(10), 4020178. doi:10.1061/(asce)gm.1943-5622.0001832.
[34] Li, J. P., & Wang, M. (2014). Simplified Method for Calculating Active Earth Pressure on Rigid Retaining Walls Considering the Arching Effect under Translational Mode. International Journal of Geomechanics, 14(2), 282–290. doi:10.1061/(asce)gm.1943-5622.0000313.
[35] He, Z. ming, Liu, Z. fu, Liu, X. hong, & Bian, H. bing. (2020). Improved method for determining active earth pressure considering arching effect and actual slip surface. Journal of Central South University, 27(7), 2032–2042. doi:10.1007/s11771-020-4428-5.
[36] Liu, H., & Kong, D. (2022). Active Earth Pressure of Finite Width Soil Considering Intermediate Principal Stress and Soil Arching Effects. International Journal of Geomechanics, 22(3), 4021294. doi:10.1061/(asce)gm.1943-5622.0002298.
[37] Cai, Y., Chen, Q., Zhou, Y., Nimbalkar, S., & Yu, J. (2017). Estimation of Passive Earth Pressure against Rigid Retaining Wall Considering Arching Effect in Cohesive-Frictional Backfill under Translation Mode. International Journal of Geomechanics, 17(4), 4016093. doi:10.1061/(asce)gm.1943-5622.0000786.
[38] Yu, P., Wu, K., Li, D., & Liu, Y. (2025). Passive Earth Pressure and Soil Arch Shape: A Two-Dimensional Analysis. Applied Sciences (Switzerland), 15(11), 6345. doi:10.3390/app15116345.
[39] Santoso, A. K., & Saito, T. (2024). An Investigation of Dynamic Soil-Structure Interaction on the Seismic Behavior of RC Base-Isolated Buildings. Civil Engineering Journal, 10(11), 3455–3472. doi:10.28991/CEJ-2024-010-11-01.
[40] Yu, P., & Liu, Y. (2024). Analysis of Active Earth Pressure Behind Rigid Retaining Walls Considering Curved Slip Surface. Geotechnical and Geological Engineering, 42(1), 251–270. doi:10.1007/s10706-023-02567-6.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()














