A Semantic-Enabled Common Data Environment for Real-Time Digital Twin Applications in Small-Scale Construction Projects
Downloads
The integration of Building Information Modeling (BIM) and Digital Twin (DT) systems has reshaped construction project delivery, but their application remains concentrated in large, resource-intensive developments. Small-scale projects, which dominate the built environment in many regions, often lack access to advanced digital platforms due to financial constraints, insufficient infrastructure, and limited technical capacity. Existing Common Data Environment (CDE) frameworks are typically monolithic and costly, making them unsuitable for the flexible and affordable deployment needed in these contexts. A persistent barrier is semantic fragmentation: without interoperable data exchange across BIM, Internet of Things (IoT) devices, and Geographic Information Systems (GIS), project information remains siloed and underutilized. This study introduces a modular, semantic-enabled CDE architecture designed specifically for small-scale projects. The framework incorporates lightweight ontologies, microservices, and knowledge graphs to deliver scalable and semantically coherent integration of BIM–IoT–GIS datasets. To validate its applicability, the research applies the model to a three-storey educational building, demonstrating how real-time DT functionality can be achieved with minimal infrastructure demands. The case study highlights improvements in data exchange, operational monitoring, and sustainability analysis, showing how the architecture supports predictive maintenance and decision-making. By synthesizing insights from literature and practical demonstration, the paper proposes a blueprint for democratizing DT adoption, enabling affordable, adaptable, and interoperable solutions for small-scale construction projects.
Downloads
[1] Mêda, P., Calvetti, D., Hjelseth, E., & Sousa, H. (2021). Incremental Digital Twin Conceptualisations Targeting Data-Driven Circular Construction. Buildings, 11(11), 554. doi:10.3390/buildings11110554.
[2] Shahat, E., Hyun, C. T., & Yeom, C. (2021). City Digital Twin Potentials: A Review and Research Agenda. Sustainability, 13(6), 3386. doi:10.3390/su13063386.
[3] Yan, J., Lu, Q., Li, N., Chen, L., & Pitt, M. (2025). Common data environment for digital twins from building to city levels. Automation in Construction, 174, 106131. doi:10.1016/j.autcon.2025.106131.
[4] Waqar, A., Othman, I., Saad, N., Azab, M., & Khan, A. M. (2023). BIM in green building: Enhancing sustainability in the small construction project. Cleaner Environmental Systems, 11, 100149. doi:10.1016/j.cesys.2023.100149.
[5] Alsehaimi, A., Baarimah, A. O., Ramu, M. B., Alajmi, M., & Ahmed, W. (2025). Integration of BIM in project management phases for achieving sustainable success in small construction projects: A SEM-based approach. Ain Shams Engineering Journal, 16(10), 103649. doi:10.1016/j.asej.2025.103649.
[6] Attaran, M., & Celik, B. G. (2023). Digital Twin: Benefits, use cases, challenges, and opportunities. Decision Analytics Journal, 6, 100165. doi:10.1016/j.dajour.2023.100165.
[7] Lucchi, E. (2023). Digital twins for the automation of the heritage construction sector. Automation in Construction, 156, 105073. doi:10.1016/j.autcon.2023.105073.
[8] Alsakka, F., Yu, H., El-Chami, I., Hamzeh, F., & Al-Hussein, M. (2024). Digital twin for production estimation, scheduling and real-time monitoring in offsite construction. Computers & Industrial Engineering, 191, 110173. doi:10.1016/j.cie.2024.110173.
[9] Abdelrahman, M., Macatulad, E., Lei, B., Quintana, M., Miller, C., & Biljecki, F. (2025). What is a Digital Twin anyway? Deriving the definition for the built environment from over 15,000 scientific publications. Building and Environment, 274, 112748. doi:10.1016/j.buildenv.2025.112748.
[10] Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access, 8, 108952–108971. doi:10.1109/access.2020.2998358.
[11] Kong, T., Hu, T., Zhou, T., & Ye, Y. (2021). Data Construction Method for the Applications of Workshop Digital Twin System. Journal of Manufacturing Systems, 58, 323–328. doi:10.1016/j.jmsy.2020.02.003.
[12] Bakhshi, S., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Najafi, M., Rahimian, F., Park, C., & Lee, D. (2024). Digital twin applications for overcoming construction supply chain challenges. Automation in Construction, 167, 105679. doi:10.1016/j.autcon.2024.105679.
[13] Waqar, A., Othman, I., Shafiq, N., & Mateen Khan, A. (2023). Integration of passive RFID for small-scale construction project management. Data and Information Management, 7(4), 100055. doi:10.1016/j.dim.2023.100055.
[14] Lindholm, J., Johansson, P., & Yitmen, I. (2025). Toward a BIM information delivery framework based on common data environment. Construction Innovation, 25(7), 139–157. doi:10.1108/ci-06-2024-0185.
[15] Bujari, A., Calvio, A., Foschini, L., Sabbioni, A., & Corradi, A. (2021). A Digital Twin Decision Support System for the Urban Facility Management Process. Sensors, 21(24), 8460. doi:10.3390/s21248460.
[16] Petri, I., Amin, A., Ghoroghi, A., Hodorog, A., & Rezgui, Y. (2025). Digital twins for dynamic life cycle assessment in the built environment. Science of The Total Environment, 993, 179930. doi:10.1016/j.scitotenv.2025.179930.
[17] Jiang, Y., Su, S., Zhao, S., Zhong, R. Y., Qiu, W., Skibniewski, M. J., Brilakis, I., & Huang, G. Q. (2024). Digital twin-enabled synchronized construction management: A roadmap from construction 4.0 towards future prospect. Developments in the Built Environment, 19, 100512. doi:10.1016/j.dibe.2024.100512.
[18] Kang, T. W., & Mo, Y. (2024). A comprehensive digital twin framework for building environment monitoring with emphasis on real-time data connectivity and predictability. Developments in the Built Environment, 17, 100309. doi:10.1016/j.dibe.2023.100309.
[19] Klemt-Albert, K., Hagedorn, P., & Pullmann, T. (2018). Utilising the Potential of Standardised BIM Models by a Fundamental Transformation of Collaboration Processes. Advanced Computing Strategies for Engineering, 470–486. doi:10.1007/978-3-319-91638-5_26
[20] Al-Sadoon, N., Scherer, R. J., & Strnadl, C. F. (2025). Dynamic Multi-Model Container Framework for Cloud-Based Distributed Digital Twins (dDTws). Buildings, 15(10), 1722. doi:10.3390/buildings15101722.
[21] Steiner, O. A. M. (2025). City digital twins and the urban laboratory: The practice and politics of ‘sandbox urbanism.’ Cities, 166, 106261. doi:10.1016/j.cities.2025.106261.
[22] Stanton, J. (2025). CDEs for City-Level Digital Twins: What’s Needed?” CM Digital. Available online: https://constructionmanagement.co.uk/cdes-for-city-level-digital-twins-whats-needed/ (accessed on November 2025).
[23] Ibrahim, A., Kineber, A. F., Mohandes, S. R., Lan, Y., Banihashemi, S., & Shakor, P. (2026). Understanding risk dynamics in digital twin integration: A causal analysis for smart infrastructure projects. Expert Systems with Applications, 297, 129533. doi:10.1016/j.eswa.2025.129533.
[24] Waqar, A., Qureshi, A. H., & Alaloul, W. S. (2023). Barriers to Building Information Modeling (BIM) Deployment in Small Construction Projects: Malaysian Construction Industry. Sustainability, 15(3), 2477. doi:10.3390/su15032477.
[25] Wang, Y., Wang, H., Wang, W., Song, S., & Fu, X. (2024). Architecture, application, and prospect of digital twin for highway infrastructure. Journal of Traffic and Transportation Engineering (English Edition), 11(5), 835–852. doi:10.1016/j.jtte.2024.03.003.
[26] European Commission. (2025). European Construction Sector Observatory (ECSO). Brussels: European Commission. Available online: https://ec.europa.eu/growth/sectors/construction/observatory (accessed on November 2025).
[27] Shehata, A. O., Noroozinejad Farsangi, E., Morrison, G. M., Rashidi, M., Yang, T. Y., & M. Mirdan, M. (2025). Enhanced digital twins (EDTs) approach based on advanced inspection and technology adoption to achieve sustainable construction processes. Energy and Buildings, 342, 115880. doi:10.1016/j.enbuild.2025.115880.
[28] European Commission. (2020). BIM2TWIN: Optimal Construction Management & Production Control – Digital Twin Platform for Efficient Construction Management. Project ID: 958398. Brussels: European Commission. Available online: https://cordis.europa.eu/project/id/958398/results (accessed on November 2025).
[29] Schlenger, J., Pluta, K., Mathew, A., Yeung, T., Sacks, R., & Borrmann, A. (2025). Reference architecture and ontology framework for digital twin construction. Automation in Construction, 174, 106111. doi:10.1016/j.autcon.2025.106111.
[30] Moshood, T. D., Rotimi, J. OB., Shahzad, W., & Bamgbade, J. A. (2024). Infrastructure digital twin technology: A new paradigm for future construction industry. Technology in Society, 77, 102519. doi:10.1016/j.techsoc.2024.102519.
[31] Palihakkara, A. D., Osorio-Sandoval, C. A., & Tizani, W. (2025). A Review of the Application of Ontologies and Semantic Web for Building Information Modelling and Digital Twins Based Construction Management. Journal of Information Technology in Construction, 30(1), 1208. doi:10.36680/j.itcon.2025.049.
[32] European Commission. (2020). COGITO: Construction-Phase Digital Twin Model – Digital Twin Solution for Lean Construction. Project ID: 958310. Brussels: European Commission. Available online: https://cordis.europa.eu/project/id/958310/results (accessed on November 2025).
[33] European Commission. (2020). ASHVIN: Digital Twin Technologies Enabling Energy-Efficient Buildings with a Low Environmental Impact. Project ID: 958161. Brussels: European Commission. Available online: https://cordis.europa.eu/project/id/958161 (accessed on November 2025).
[34] Franciosi, M., Kasser, M., & Viviani, M. (2024). Digital twins in bridge engineering for streamlined maintenance and enhanced sustainability. Automation in Construction, 168, 105834. doi:10.1016/j.autcon.2024.105834.
[35] Yuan, E., Yang, J., Saafi, M., Wang, F., & YE, J. (2025). Realization of the physical to virtual connection for digital twin of construction crane. Journal of Industrial Information Integration, 44, 100779. doi:10.1016/j.jii.2025.100779.
[36] Lei, B., Janssen, P., Stoter, J., & Biljecki, F. (2023). Challenges of urban digital twins: A systematic review and a Delphi expert survey. Automation in Construction, 147, 104716. doi:10.1016/j.autcon.2022.104716.
[37] Tuhaise, V. V., Tah, J. H. M., & Abanda, F. H. (2023). Technologies for digital twin applications in construction. Automation in Construction, 152, 104931. doi:10.1016/j.autcon.2023.104931.
[38] Yilmaz, G., Akcamete, A., & Demirors, O. (2023). BIM-CAREM: Assessing the BIM capabilities of design, construction and facilities management processes in the construction industry. Computers in Industry, 147, 103861. doi:10.1016/j.compind.2023.103861.
[39] Ramonell, C., Chacón, R., & Posada, H. (2023). Knowledge graph-based data integration system for digital twins of built assets. Automation in Construction, 156, 105109. doi:10.1016/j.autcon.2023.105109.
[40] Yan, Y., Ni, L., Sun, L., Wang, Y., & Zhou, J. (2025). Digital Twin Enabling Technologies for Advancing Road Engineering and Lifecycle Applications. Engineering, 44, 184–206. doi:10.1016/j.eng.2024.12.017.
[41] Kosse, S., Hagedorn, P., & König, M. (2025). Semantic Digital Twins in Construction: Developing a modular System Reference Architecture based on Information Containers. Advanced Engineering Informatics, 67, 103483. doi:10.1016/j.aei.2025.103483.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















