Influence of Polypropylene Fiber on Mechanical and Shrinkage Behavior of Porcelain Based Geopolymer
Downloads
This study examines the effects of polypropylene (PP) fiber content and initial curing temperature on shrinkages, mechanical properties, and microstructural characteristics of porcelain-based geopolymers. Geopolymer mixes were prepared with PP fiber dosages of 0.5%, 1.0%, 1.5%, and 2.0% by weight and initially cured at 60 °C, 75 °C, 90 °C, and 105 °C. Autogenous and drying shrinkage were monitored at 24 h, 72 h and 3, 7, 14, 21, 28, 60, 90, and 120 days, while compressive and splitting tensile strengths were tested at 3, 7, 14, 21, and 28 days. The results demonstrated that the incorporation of PP fiber not only shortened the setting time but also significantly reduced both autogenous and drying shrinkage of the geopolymer mortar. The most favorable performance was observed in specimens containing 2.0% PP fiber cured at 105 °C, which exhibited the lowest shrinkage values. Autogenous shrinkage was 439 μɛ at 24 h and 392 μɛ at 120 days, while drying shrinkage was 544 μɛ at 24 h and 194 μɛ at 120 days. Increasing fiber content decreased porosity, producing a more compact, homogeneous matrix and improving mechanical performance of concrete specimens, particularly splitting tensile strength; the optimal dosage was 2%, yielding 28‑day compressive strength of 41.03 N/mm² and splitting tensile strength of 7.65 N/mm².
Downloads
[1] Mejeoumov, G.G., (2007). Improved cement quality and grinding efficiency by means of closed mill circuit modeling. Ph.D. Thesis. Civil Engineering Department, Texas A&M University, TX, United States.
[2] Chen, X., Zhou, M., Shen, W., Zhu, G., & Ge, X. (2018). Mechanical properties and microstructure of metakaolin-based geopolymer compound-modified by polyacrylic emulsion and polypropylene fibers. Construction and Building Materials, 190, 680–690. doi:10.1016/j.conbuildmat.2018.09.116.
[3] Hanumananaik, M., & Subramaniam, K. V. L. (2023). Shrinkage in low-calcium fly ash geopolymers for precast applications: Reaction product content and pore structure under drying conditions. Journal of Building Engineering, 78, 107583. doi:10.1016/j.jobe.2023.107583.
[4] Kucukgoncu, H., & Özbayrak, A. (2024). Microstructural Analysis of Low-Calcium Fly Ash-Based Geopolymer Concrete with Different Ratios of Activator and Binder Under High Temperatures. Arabian Journal for Science and Engineering, 50(11), 8197–8223. doi:10.1007/s13369-024-09266-1.
[5] Celik, A., Yilmaz, K., Canpolat, O., Al-mashhadani, M. M., Aygörmez, Y., & Uysal, M. (2018). High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Construction and Building Materials, 187, 1190–1203. doi:10.1016/j.conbuildmat.2018.08.062.
[6] Assaedi, H., Alomayri, T., Shaikh, F. U. A., & Low, I.-M. (2015). Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. Journal of Advanced Ceramics, 4(4), 272–281. doi:10.1007/s40145-015-0161-1.
[7] Sun, P., & Wu, H.-C. (2008). Transition from brittle to ductile behavior of fly ash using PVA fibers. Cement and Concrete Composites, 30(1), 29–36. doi:10.1016/j.cemconcomp.2007.05.008.
[8] Ricciotti, L., Roviello, G., Tarallo, O., Borbone, F., Ferone, C., Colangelo, F., Catauro, M., & Cioffi, R. (2013). Synthesis and Characterizations of Melamine-Based Epoxy Resins. International Journal of Molecular Sciences, 14(9), 18200–18214. doi:10.3390/ijms140918200.
[9] Shen, D., Liu, X., Zeng, X., Zhao, X., & Jiang, G. (2020). Effect of polypropylene plastic fibers length on cracking resistance of high performance concrete at early age. Construction and Building Materials, 244, 117874. doi:10.1016/j.conbuildmat.2019.117874.
[10] He, F., Biolzi, L., Carvelli, V., & Feng, X. (2024). A review on the mechanical characteristics of thermally damaged steel and polypropylene hybrid fiber-reinforced concretes. Archives of Civil and Mechanical Engineering, 24(2). doi:10.1007/s43452-024-00880-2.
[11] Boulekbache, B., Hamrat, M., Chemrouk, M., & Amziane, S. (2010). Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Construction and Building Materials, 24(9), 1664–1671. doi:10.1016/j.conbuildmat.2010.02.025.
[12] Zhang, Z.-H., Yao, X., Zhu, H.-J., Hua, S.-D.& Chen, Y., (2009). Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer, Journal of Central South University, 16 (1), 49–52. doi:10.1007/s11771-009-0008-4.
[13] Gholampour, A., Hosseini-Poul, S. M., Nezhad, S. M., Nematzadeh, M., & Ozbakkaloglu, T., (2025). Effect of polypropylene and polyvinyl alcohol fibers on mechanical behavior and durability of geopolymers containing lead slag: Testing, optimization, and life cycle assessment, Construction and Building Materials, 462: 139960. doi:10.1016/j.conbuildmat.2025.139960
[14] Hong, L., Tang, W., Tan, Y., Wang, Y., Guo, B., Gao, P., Zhan, B., & Yu, Q. (2025). Effect of short fibers on non-uniform strain distribution of geopolymer mortar under dry conditions. Construction and Building Materials, 459, 139768. doi:10.1016/j.conbuildmat.2024.139768.
[15] Patil, S.S., & Patil. A.A., (2015) Properties of polypropylene fiber reinforced geopolymer concrete. International Journal of Current Engineering and Technology, 5(4), 2909-2912.
[16] Zhang, H., Sarker, P. K., Wang, Q., He, B., & Jiang, Z. (2024). Comparative fracture properties of ambient-cured geopolymer concrete containing four different fibers in mono and hybrid combinations using digital image correlation. Journal of Building Engineering, 89, 109288. doi:10.1016/j.jobe.2024.109288.
[17] Ríos, J. D., Mínguez, J., Martínez-De La Concha, A., Vicente, M. Á., & Cifuentes, H. (2020). Microstructural analyses of the addition of PP fibres on the fracture properties of high-strength self-compacting concrete by X-ray computed tomography. Construction and Building Materials, 261, 120499. doi:10.1016/j.conbuildmat.2020.120499.
[18] Peng, M. X., Wang, Z. H., Shen, S. H., & Xiao, Q. G. (2014). Synthesis, characterization and mechanisms of one-part geopolymeric cement by calcining low-quality kaolin with alkali. Materials and Structures, 48(3), 699–708. doi:10.1617/s11527-014-0350-3.
[19] Hanumananaik, M., Reddy, M. S. K., & Subramaniam, K. V. (2022). High-temperature performance of low-calcium fly ash–based geopolymers. Journal of Materials in Civil Engineering, 34(5), 04022040. doi:10.1061/(ASCE)MT.1943-5533.0004181.
[20] Huang, D., Liu, Z., Lin, C., Lu, Y., & Li, S. (2024). Effects and mechanisms of component ratio and cross-scale fibers on drying shrinkage of geopolymer mortar. Construction and Building Materials, 411, 134299. doi:10.1016/j.conbuildmat.2023.134299.
[21] Chen, K. Y., Wang, Y. Q., Min, W. L., Chen, J. J., Wu, R. J., Peng, Y., ... & Xia, J. (2024). Performance characteristics of micro fiber-reinforced ambient cured one-part geopolymer mortar for repairing. Construction and Building Materials, 415, 135086. doi:10.1016/j.conbuildmat.2024.135086.
[22] Shamsah, M., Kalfat, R., & Subramaniam, K. V. L. (2025). Impact of low NaOH molarities on mechanical and durability properties of ambient and oven-cured fly ash geopolymer concrete. Journal of Building Engineering, 105, 112491. doi:10.1016/j.jobe.2025.112491.
[23] Wu, H., He, M., Wu, S., Cheng, J., Wang, T., Che, Y., Du, Y., & Deng, Q. (2024). Effects of binder component and curing regime on compressive strength, capillary water absorption, shrinkage and pore structure of geopolymer mortars. Construction and Building Materials, 442, 137707. doi:10.1016/j.conbuildmat.2024.137707.
[24] Trincal, V., Multon, S., Benavent, V., Lahalle, H., Balsamo, B., Caron, A., Bucher, R., Diaz Caselles, L., & Cyr, M. (2022). Shrinkage mitigation of metakaolin-based geopolymer activated by sodium silicate solution. Cement and Concrete Research, 162, 106993. doi:10.1016/j.cemconres.2022.106993.
[25] İlcan, H., Demirbaş, A. O., Ulugöl, H., & Şahmaran, M. (2024). Low-alkaline activated construction and demolition waste-based geopolymers. Construction and Building Materials, 411, 134546. doi:10.1016/j.conbuildmat.2023.134546.
[26] Chen, M., Wu, D., Chen, K., Liu, C., Zhou, G., & Cheng, P. (2025). The effects of solid activator dosage and the liquid-solid ratio on the properties of FA-GGBS based one-part geopolymer. Construction and Building Materials, 463, 140067. doi:10.1016/j.conbuildmat.2025.140067.
[27] de Klerk, D., Naghizadeh, A., Ekolu, S. O., & Welman-Purchase, M. (2025). Recycled cement use to produce fly ash – based geopolymer binders suitable for ambient curing: Comparison with slag effects. Construction and Building Materials, 468, 140394. doi:10.1016/j.conbuildmat.2025.140394.
[28] Yan, G., Hu, J., Chen, M., Ma, Y., Huang, H., Zhang, Z., Wei, J., Shi, C., & Yu, Q. (2025). Performance evaluation of reinforced slag-fly ash-ceramic waste powders ternary geopolymer concrete under chloride ingress environment. Construction and Building Materials, 478, 141447. doi:10.1016/j.conbuildmat.2025.141447.
[29] Castel, A., Foster, S. J., Ng, T., Sanjayan, J. G., & Gilbert, R. I. (2016). Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer Concrete. Materials and Structures/Materiaux et Constructions, 49(5), 1619–1628. doi:10.1617/s11527-015-0599-1.
[30] Aldawsari, S., Kampmann, R., Harnisch, J., & Rohde, C. (2022). Setting Time, Microstructure, and Durability Properties of Low Calcium Fly Ash/Slag Geopolymer: A Review. Materials, 15(3), 876. doi:10.3390/ma15030876.
[31] Kashani, A., Provis, J. L., & Van Deventer, J. S. J. (2013). Effect of ground granulated blast furnace slag particle size distribution on paste rheology: A preliminary model. AIP Conference Proceedings, 1542(1), 1094–1097. doi:10.1063/1.4812126.
[32] Yılmaz, A., Degirmenci, F. N., & Aygörmez, Y. (2024). Effect of initial curing conditions on the durability performance of low-calcium fly ash-based geopolymer mortars. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 63(4), 238–254. doi:10.1016/j.bsecv.2023.10.006.
[33] Xu, Z., Zhang, J., Zhang, J., Deng, Q., Xue, Z., Huang, G., & Huang, X. (2024). Influence of steel slag and steel fiber on the mechanical properties, durability, and life cycle assessment of ultra-high performance geopolymer concrete. Construction and Building Materials, 441, 137590. doi:10.1016/j.conbuildmat.2024.137590.
[34] Wongpattanawut, W., & Ayudhya, B. I. N. (2023). Effect of Curing Temperature on Mechanical Properties of Sanitary Ware Porcelain based Geopolymer Mortar. Civil Engineering Journal, 9(8), 1808–1827. doi:10.28991/CEJ-2023-09-08-01.
[35] Wongpattanawut, W., & Ayudhya, B. I. N. (2024). Optimizing Alkali-Concentration on Fresh and Durability Properties of Defected Sanitary Ware Porcelain based Geopolymer Concrete. Civil Engineering Journal, 10(4), 1069–1092. doi:10.28991/CEJ-2024-010-04-05.
[36] Klingsad, R., & Ayudhya, B. I. N. (2025). Shrinkage Characteristics and Abrasion Resistance of Porcelain Waste-Based Geopolymers Mortar Under Chemical Exposure. Civil Engineering Journal, 11(11), 4655–4676. doi:10.28991/CEJ-2025-011-11-012.
[37] ASTM International. (2021). ASTM C191-21: Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. West Conshohocken, PA, USA. doi:10.1520/C0191-21.
[38] ASTM International. (2018). ASTM C0596-18.2: Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement. West Conshohocken, PA, USA. doi:10.1520/C0596-18.2
[39] ASTM International. (2019). ASTM C1698-19: Standard Test Method for Autogenous Strain of Cement Paste and Mortar. American Society for Testing and Materials: West Conshohocken, PA, USA.
[40] ASTM International. (2012). ASTM C143/C143M-12: Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International: West Conshohocken, PA, USA. doi:10.1520/C0143_C0143M-12.
[41] BS EN 12350-3-2009 Part 3 (2009). Vebe test, Testing fresh concrete, Concrete and concrete products. British Standard: London, UK, 9 pages,
[42] ASTM International. (1997). ASTM Standard C642: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA. doi:10.1520/C0642-97.
[43] ASTM International. (2016). ASTM C109/C109M-16a: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. ASTM International: West Conshohocken, PA, USA.
[44] ASTM International. (2004). ASTM C496-96: Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM International: West Conshohocken, PA, USA.
[45] Pangdaeng, S., Phoo-ngernkham, T., Sata, V., & Chindaprasirt, P. (2014). Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Materials and Design, 53, 269–274. doi:10.1016/j.matdes.2013.07.018.
[46] Punurai, W., Kroehong, W., Saptamongkol, A., & Chindaprasirt, P. (2018). Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste. Construction and Building Materials, 186, 62–70. doi:10.1016/j.conbuildmat.2018.07.115.
[47] Lee, N. K., & Lee, H. K. (2015). Reactivity and reaction products of alkali-activated, fly ash/slag paste. Construction and Building Materials, 81, 303–312. doi:10.1016/j.conbuildmat.2015.02.022.
[48] Guo, X., Shi, H., & Wei, X. (2017). Pore properties, inner chemical environment, and microstructure of nano-modified CFA-WBP (class C fly ash-waste brick powder) based geopolymers. Cement and Concrete Composites, 79, 53–61. doi:10.1016/j.cemconcomp.2017.01.007.
[49] Sathonsaowaphak, A., Chindaprasirt, P., & Pimraksa, K. (2009). Workability and strength of lignite bottom ash geopolymer mortar. Journal of Hazardous Materials, 168(1), 44–50. doi:10.1016/j.jhazmat.2009.01.120.
[50] Hannawi, K., Bian, H., Prince-Agbodjan, W., & Raghavan, B. (2016). Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes. Composites Part B: Engineering, 86, 214-220. doi:10.1016/j.compositesb.2015.09.059.
[51] Jabbar, A. M., Hamood, M. J., & Mohammed, D. H. (2021). The effect of using basalt fibers compared to steel fibers on the shear behavior of ultra-high performance concrete T-beam. Case Studies in Construction Materials, 15, e00702. doi:10.1016/j.cscm.2021.e00702.
[52] Hanumananaik, M., & Subramaniam, K. V. L. (2023). Influence of Process Variables on Shrinkage in Low-Calcium Fly-Ash Geopolymers. Journal of Materials in Civil Engineering, 35(6), 1–10. doi:10.1061/jmcee7.mteng-14761.
[53] Ma, Y., & Ye, G. (2015). The shrinkage of alkali activated fly ash. Cement and Concrete Research, 68, 75–82. doi:10.1016/j.cemconres.2014.10.024.
[54] Ling, Y., Wang, K., & Fu, C. (2019). Shrinkage behavior of fly ash based geopolymer pastes with and without shrinkage reducing admixture. Cement and Concrete Composites, 98, 74-82. doi:10.1016/j.cemconcomp.2019.02.007.
[55] Hojati, M., & Radlińska, A. (2017). Shrinkage and strength development of alkali-activated fly ash-slag binary cements. Construction and Building Materials, 150, 808–816. doi:10.1016/j.conbuildmat.2017.06.040.
[56] Li, Z., Lu, T., Liang, X., Dong, H., & Ye, G. (2020). Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes. Cement and Concrete Research, 135. doi:10.1016/j.cemconres.2020.106107.
[57] Amran, M., Al-Fakih, A., Chu, S. H., Fediuk, R., Haruna, S., Azevedo, A., & Vatin, N. (2021). Long-term durability properties of geopolymer concrete: An in-depth review. Case Studies in Construction Materials, 15, 661. doi:10.1016/j.cscm.2021.e00661.
[58] Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (1999). Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cement and Concrete Research, 29(10), 1619–1625. doi:10.1016/S0008-8846(99)00143-X.
[59] Ye, H., & Radlinska, A. (2017). Shrinkage mitigation strategies in alkali-activated slag, Cement and Concrete Research. 101, 131–143. doi:10.1016/j.cemconres.2017.08.025.
[60] Wongsa, A., Boonserm, K., Waisurasingha, C., Sata, V., & Chindaprasirt, P. (2017). Use of municipal solid waste incinerator (MSWI) bottom ash in high calcium fly ash geopolymer matrix. Journal of Cleaner Production, 148, 49–59. doi:10.1016/j.jclepro.2017.01.147.
[61] Rudić, O., Grengg, C., Seyrek, Y., Steindl, F., Müller, B., Zögl, I., Wohlmuth, D., Ukrainczyk, N., & Mittermayr, F. (2025). Drying shrinkage and carbonation of steel slag-metakaolin alkali-activated composites: Effect of vegetable oil addition and slag aggregates. Cement and Concrete Research, 189, 107764. doi:10.1016/j.cemconres.2024.107764.
[62] Ye, G., Lura, P., & Van Breugel, K. (2006). Modelling of water permeability in cementitious materials. Materials and Structures/Materiaux et Constructions, 39(9), 877–885. doi:10.1617/s11527-006-9138-4.
[63] Udhaya Kumar, T., Vinod Kumar, M., Lakkaboyana, S. K., Trilaksana, H., & Ansari, A. (2025). Investigation of bond strength and flexural behaviour of geopolymer aggregate concrete beams. Case Studies in Construction Materials, 22. doi:10.1016/j.cscm.2025.e04916.
[64] Tahwia, A. M., Heniegal, A. M., Abdellatief, M., Tayeh, B. A., & Elrahman, M. A. (2022). Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass. Case Studies in Construction Materials, 17, 1393. doi:10.1016/j.cscm.2022.e01393.
[65] Xu, H., & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59(3), 247–266. doi:10.1016/S0301-7516(99)00074-5.
[66] Parthiban, K., & Saravana Raja Mohan, K., (2017). Influence of recycled concrete aggregates on the engineering and durability properties of alkali activated slag concrete, Construction and Building Materials, 133: 65–72. doi:10.1016/j.conbuildmat.2016.12.050.
[67] Saloni, Parveen, Lim, Y. Y., Pham, T. M. (2021). Effective utilisation of ultrafine slag to improve mechanical and durability properties of recycled aggregates geopolymer concrete, Cleaner Engineering and Technology, 5, 100330. doi:10.1016/j.clet.2021.100330.
[68] Hu, Y., Tang, Z., Li, W., Li, Y., & Tam, V. W. Y. (2019). Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Construction and Building Materials, 226, 139–151. doi:10.1016/j.conbuildmat.2019.07.211.
[69] Zuaiter, M., El-Hassan, H., El-Maaddawy, T., & El-Ariss, B. (2022). Properties of Slag-Fly Ash Blended Geopolymer Concrete Reinforced with Hybrid Glass Fibers. Buildings, 12(8), 1114. doi:10.3390/buildings12081114.
[70] Posi, P., Ridtirud, C., Ekvong, C., Chammanee, D., Janthowong, K., & Chindaprasirt, P. (2015). Properties of lightweight high calcium fly ash geopolymer concretes containing recycled packaging foam. Construction and Building Materials, 94, 408–413. doi:10.1016/j.conbuildmat.2015.07.080.
[71] Ye, G., Lura, P., & Van Breugel, K. (2006). Modelling of water permeability in cementitious materials. Materials and Structures/Materiaux et Constructions, 39(9), 877–885. doi:10.1617/s11527-006-9138-4.
[72] Jennings, H. M. (2000). Model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research, 30(1), 101–116. doi:10.1016/S0008-8846(99)00209-4.
[73] Palmer, M. L., Claflin, D. R., Faulkner, J. A., & Panchangam, A. (2011). Non-uniform distribution of strain during stretch of relaxed skeletal muscle fibers from rat soleus muscle. Journal of muscle research and cell motility, 32(1), 39-48. doi:10.1007/s10974-011-9250-0.
[74] Rajak, M., & Rai, B. (2019). Effect of Micro Polypropylene Fibre on the Performance of Fly Ash-Based Geopolymer Concrete. Journal of Applied Engineering Sciences, 9(1), 97–108. doi:10.2478/jaes-2019-0013.
[75] Awwad, E., Mabsout, M., Hamad, B., Farran, M. T., & Khatib, H. (2012). Studies on fiber-reinforced concrete using industrial hemp fibers. Construction and Building Materials, 35, 710–717. doi:10.1016/j.conbuildmat.2012.04.119.
[76] Naraganti, S. R., Pannem, R. M. R., & Putta, J. (2019). Impact resistance of hybrid fibre reinforced concrete containing sisal fibres. Ain Shams Engineering Journal, 10(2), 297–305. doi:10.1016/j.asej.2018.12.004.
[77] Chen, S., Ruan, S., Zeng, Q., Liu, Y., Zhang, M., Tian, Y., & Yan, D. (2022). Pore structure of geopolymer materials and its correlations to engineering properties: A review. Construction and Building Materials, 328. doi:10.1016/j.conbuildmat.2022.127064.
[78] Farhana, Z. F., Kamarudin, H., Rahmat, A., & Bakri, A. M. M. Al. (2014). A study on relationship between porosity and compressive strength for geopolymer paste. Key Engineering Materials, 594–595, 1112–1116. doi:10.4028/www.scientific.net/KEM.594-595.1112.
[79] ACI Committee. (1999). Building code requirements for structural concrete: (ACI 318-99); and commentary (ACI 318R-99). American Concrete Institute, Farmington Hills, Michigan, USA.
[80] ACI Committee. (1992). State-of-the-Art Report on High-Strength Concrete: (ACI 363R-92). American Concrete Institute, Farmington Hills, Michigan, USA.
[81] Raphael, J. M. (1984). Tensile Strength of Concrete. Journal of the American Concrete Institute, 81(2), 158–165. doi:10.1007/978-3-642-41714-6_200519
[82] Lavanya, G., & Jegan, J. (2015). Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity. International Journal of Applied Engineering Research, 10(15), 35523–35529.
[83] Arioglu, N., Canan Girgin, Z., & Arioglu, E. (2006). Evaluation of ratio between splitting tensile strength and compressive strength for concretes up to 120 MPa and its application in strength criterion. ACI Materials Journal, 103(1), 18–24. doi:10.14359/15123.
[84] Khoso, S., Raad, J., & Parvin, A. (2019). Experimental Investigation on the Properties of Recycled Concrete Using Hybrid Fibers. Open Journal of Composite Materials, 09(02), 183–196. doi:10.4236/ojcm.2019.92009.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.![]()















