Peruvian Subduction Surface Model for Seismic Hazard Assessments

Luis Fernando Vergaray Astupina, Zenón Aguilar B., Renzo S. Cornejo


Throughout the years seismic hazard calculations in Peru have been developed using area sources models, having to date a great variety of models, however, since they are discretized planar models, they cannot adequately represent the continuity and subduction characteristics of the Nazca Plate. The main objective of this work is the developing of a surface subduction model (SSM), useful for seismic hazard assessments as well as the revision and control of previous models used in this sort of assessments. In this study a spatial interpolation was performed employing the Local Polynomial Interpolation method to capture short-range variation in addition to long-range trends. The data base is based on the compilation of seismic catalogs from Peruvian and international institutions such as the IGP, the USGS, the ISC and others, subsequently, in order to have independent events the elimination of duplicate events, aftershocks and foreshocks was carried out. Then, by interpolation of the focal depths of the independent events, a subduction surface model (SSM) was generated as well as a Standard Error Surface which supports a good correlation of the model. Furthermore, 14 transversal sections of the SSM was employed to compare with the hypocenter’s distributions, evidencing a good correlation with the spatial distribution of the events, in addition to adequately capturing the subduction characteristics of the Nazca Plate. Finally, a comparison was made between 2 Peruvian area models for seismic hazard and SSM developed in the present research, evidencing that seismic source models of the area type have deficiencies mainly in the depths they consider, thus is recommended the use of the present model for future seismic hazard assessments.


Subduction Surface Model; Seismic Hazard; Seismic Sources.


Castillo, J.and J. E. Alva. “Peligro sísmico en el Perú”. Memorias del VIII Congreso Nacional de Mecánica de Suelos e Ingeniería de Cimentaciones, SPMSIF, Lima (December, 1993).

Bolanos, A., M. Monroy (2004). “Espectros de peligro sísmico uniforme”. Pontifical Catholic University of Peru, Lima (2004).

Gamarra, C. A. “Nuevas Fuentes Sismogénicas para la Evaluación del Peligro Sísmico y Generación de Espectros de Peligro Uniforme en el Perú”. National University of Engineering, Lima (2009).

Aguilar, Z., M. Roncal M. and R. Piedra. “Probabilistic Seismic Hazard Assessment in the Peruvian Territory” 16th World Conference on Earthquake Engineering, 16WCEE, N° 3028 (January 9, 2017).

Kramer, S. L. “Geotechnical Earthquake Engineering, First Edition”, Prentice Hall, New York, (September, 1996).

Ricaldi, E. (2015). “Condicionamientos a la sismicidad en Bolivia”. Revista Boliviana de Física, La Paz, v. 26, n. 26, (June, 2015): 17–29.

Witt, César, Jacques Bourgois, François Michaud, Martha Ordoñez, Nelson Jiménez, and Marc Sosson. “Development of the Gulf of Guayaquil (Ecuador) During the Quaternary as an Effect of the North Andean Block Tectonic Escape.” Tectonics 25, no. 3 (June 2006). doi:10.1029/2004tc001723.

Gutscher, M.-A., J.-L. Olivet, D. Aslanian, J.-P. Eissen, and R. Maury. “The ‘lost Inca Plateau’: Cause of Flat Subduction Beneath Peru?” Earth and Planetary Science Letters 171, no. 3 (September 1999): 335–341. doi:10.1016/s0012-821x(99)00153-3.

Lonsdale, P. (1978). Ecuadorian Subduction System. Bulletin of the American Association of Petroleum Geologists, 62: 2454– 2477.

Yamano, M., and S. Uyeda. “Heat-Flow Studies in the Peru Trench Subduction Zone.” Proceedings of the Ocean Drilling Program (May 1990). doi:10.2973/

Macharé, José, and Luc Ortlieb. “Plio-Quaternary Vertical Motions and the Subduction of the Nazca Ridge, Central Coast of Peru.” Tectonophysics 205, no. 1–3 (April 1992): 97–108. doi:10.1016/0040-1951(92)90420-b.

Phillips, Kristin, Robert W. Clayton, Paul Davis, Hernando Tavera, Richard Guy, Steven Skinner, Igor Stubailo, Laurence Audin, and Victor Aguilar. “Structure of the Subduction System in Southern Peru from Seismic Array Data.” Journal of Geophysical Research: Solid Earth 117, no. B11 (November 2012). doi:10.1029/2012jb009540.

Robinson, D. P. “Earthquake Rupture Stalled by a Subducting Fracture Zone.” Science 312, no. 5777 (May 26, 2006): 1203–1205. doi:10.1126/science.1125771.

Reasenberg, Paul. “Second-Order Moment of Central California Seismicity, 1969-1982.” Journal of Geophysical Research: Solid Earth 90, no. B7 (June 10, 1985): 5479–5495. doi:10.1029/jb090ib07p05479.

Maeda, K. “The use of foreshocks in probabilistic prediction along the Japan and Kuril Trenches”. Bulletin of the Seismological Society of America, 86 (1A) (February 1, 1996): 242-254.

ESRI. (2018). Geostatistical Analyst example applications. Retrieved from

Guillier, B., J.-L. Chatelain, É. Jaillard, H. Yepes, G. Poupinet, and J.-F. Fels. “Seismological Evidence on the Geometry of the Orogenic System in Central-Northern Ecuador (South America).” Geophysical Research Letters 28, no. 19 (October 1, 2001): 3749–3752. doi:10.1029/2001gl013257.

Peter Lonsdale. “Ecuadorian Subduction System.” AAPG Bulletin 62 (1978). doi:10.1306/c1ea5526-16c9-11d7-8645000102c1865d.

Prévot, R., J. Chatelain, B. Guillier, and H. Yepes. “Tomographie des Andes équatoriennes: évidence d'une continuité des Andes centrales”, C. R. Acad. Sci. Paris, vol.323, (1996): 833-840.

Yepes, Hugo, Laurence Audin, Alexandra Alvarado, Céline Beauval, Jorge Aguilar, Yvonne Font, and Fabrice Cotton. “A New View for the Geodynamics of Ecuador: Implication in Seismogenic Source Definition and Seismic Hazard Assessment.” Tectonics 35, no. 5 (May 2016): 1249–1279. doi:10.1002/2015tc003941.

Cahill, Thomas, and Bryan L. Isacks. “Seismicity and Shape of the Subducted Nazca Plate.” Journal of Geophysical Research 97, no. B12 (1992): 17503. doi:10.1029/92jb00493.

Hayes, Gavin P., David J. Wald, and Rebecca L. Johnson. “Slab1.0: A Three-Dimensional Model of Global Subduction Zone Geometries.” Journal of Geophysical Research: Solid Earth 117, no. B1 (January 2012): n/a–n/a. doi:10.1029/2011jb008524.

Bishop, Brandon T., Susan L. Beck, George Zandt, Lara Wagner, Maureen Long, Sanja Knezevic Antonijevic, Abhash Kumar, and Hernando Tavera. “Causes and Consequences of Flat-Slab Subduction in Southern Peru.” Geosphere 13, no. 5 (July 27, 2017): 1392–1407. doi:10.1130/ges01440.1.

Antonijevic, Sanja Knezevic, Lara S. Wagner, Abhash Kumar, Susan L. Beck, Maureen D. Long, George Zandt, Hernando Tavera, and Cristobal Condori. “The Role of Ridges in the Formation and Longevity of Flat Slabs.” Nature 524, no. 7564 (August 2015): 212–215. doi:10.1038/nature14648.

Dougherty, S. L., and R. W. Clayton. “Seismic Structure in Southern Peru: Evidence for a Smooth Contortion Between Flat and Normal Subduction of the Nazca Plate.” Geophysical Journal International 200, no. 1 (November 26, 2014): 534–555. doi:10.1093/gji/ggu415.

Kumar, Abhash, Lara S. Wagner, Susan L. Beck, Maureen D. Long, George Zandt, Bissett Young, Hernando Tavera, and Estella Minaya. “Seismicity and State of Stress in the Central and Southern Peruvian Flat Slab.” Earth and Planetary Science Letters 441 (May 2016): 71–80. doi:10.1016/j.epsl.2016.02.023.

Syracuse, Ellen M., and Geoffrey A. Abers. “Global Compilation of Variations in Slab Depth Beneath Arc Volcanoes and Implications.” Geochemistry, Geophysics, Geosystems 7, no. 5 (May 2006): n/a–n/a. doi:10.1029/2005gc001045.

Kim, YoungHee, and Robert W. Clayton. “Seismic Properties of the Nazca Oceanic Crust in Southern Peruvian Subduction System.” Earth and Planetary Science Letters 429 (November 2015): 110–121. doi:10.1016/j.epsl.2015.07.055.

Hasegawa, Akira, and I. Selwyn Sacks. “Subduction of the Nazca Plate Beneath Peru as Determined from Seismic Observations.” Journal of Geophysical Research: Solid Earth 86, no. B6 (June 10, 1981): 4971–4980. doi:10.1029/jb086ib06p04971.

Full Text: PDF

DOI: 10.28991/cej-2019-03091305


  • There are currently no refbacks.

Copyright (c) 2019 Luis Fernando Vergaray Astupina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.