Structural Behavior of Pipelines Buried in Expansive Soils under Rainfall Infiltration (Part I: Transverse Behavior)

Mohammed Bouatia, Rafik Demagh, Zohra Derriche


Landslides, fault movements as well as shrink/swell soil displacements can exert important additional loadings on soil buried structures such as pipelines. These loadings may damage the buried structures whenever they reach the strength limits of the structure material. This paper presents a two-dimensional plane-strain finite element analysis of an 800 mm diameter water supply pipeline buried within the expansive clay of the Ain-Tine area (Mila, Algeria), considering the unsaturated behavior of the soil under a rainfall infiltration of 4 mm/day intensity and which lasts for different time durations (8, 15 and 30 days). The simulations were carried out using the commercial software module SIGMA/W and considering different initial soil suction conditions P1, P2, P3 and P4. The soil surface heave and the radial induced forces on the pipeline ring (i.e., Axial , Shear  forces and bending moments ) results indicated that following the changes of suction the rainfall infiltration can cause considerable additional loads on the buried pipeline. Moreover, these loads are proportionally related to the initial soil suction conditions as well as to the rainfall infiltration time duration. The study highlighted that the unsaturated behavior of expansive soils because of their volume instability are very sensitive to climatic conditions and can exert adverse effects on pipelines buried within such soils. As a result, consistent pipeline design should seriously consider the study of the effect of the climatic conditions on the overall stability of the pipeline structure.


Finite Element Analysis; Unsaturated Soil; Buried Pipeline; Rainfall Infiltration; Suction; Radial Internal Forces.


Zhang, Xiong, and Jean-Louis Briaud. “Three Dimensional Numerical Simulation of Residential Building on Shrink-Swell Soils in Response to Climatic Conditions.” International Journal for Numerical and Analytical Methods in Geomechanics 39, no. 13 (March 23, 2015): 1369–1409. doi:10.1002/nag.2360.

Ozer, Mustafa, Resat Ulusay, and Nihat Sinan Isik. “Evaluation of Damage to Light Structures Erected on a Fill Material Rich in Expansive Soil.” Bulletin of Engineering Geology and the Environment 71, no. 1 (August 30, 2011): 21–36. doi:10.1007/s10064-011-0395-2.

Yilmaz, Işık. “The Effect of Swelling Clays on a Water Transport Canal Between Köklüce HPP and Erbaa HPP (Turkey).” Bulletin of Engineering Geology and the Environment 66, no. 4 (February 24, 2007): 467–472. doi:10.1007/s10064-007-0086-1.

Clark, Curtis M. “EXPANSIVE-SOIL EFFECT ON BURIED PIPE.” Journal - American Water Works Association 63, no. 7 (July 1971): 424–427. doi:10.1002/j.1551-8833.1971.tb04116.x.

Robert, D. J., K. Soga, and T. D. O’Rourke. “Pipelines Subjected to Fault Movement in Dry and Unsaturated Soils.” International Journal of Geomechanics 16, no. 5 (October 2016). doi:10.1061/(asce)gm.1943-5622.0000548.

Uzundurukan, Soner, Sıddıka Nilay Keskin, Hüseyin Yıldırım, Turan Selçuk Göksan, and Ömür Çimen. “Suction and Swell Characteristics of Compacted Clayey Soils.” Arabian Journal for Science and Engineering 39, no. 2 (November 7, 2013): 747–752. doi:10.1007/s13369-013-0852-2.

Ito, Maki, Shahid Azam, and Yafei Hu. “A Two Stage Model for Moisture-Induced Deformations in Expansive Soils.” Environmental Systems Research 3, no. 1 (June 24, 2014). doi:10.1186/s40068-014-0019-5.

D. G. Fredlund et H. Rahardjo, Soil Mechanics for Unsaturated Soils. John Wiley & Sons, 1993.

Biot, Maurice A. “General Theory of Three‐Dimensional Consolidation.” Journal of Applied Physics 12, no. 2 (February 1941): 155–164. doi:10.1063/1.1712886.

Fredlund, D. G., and N. R. Morgenstern. “Constitutive Relations for Volume Change in Unsaturated Soils.” Canadian Geotechnical Journal 13, no. 3 (August 1, 1976): 261–276. doi:10.1139/t76-029.

Kumar, Sanjeev, Anil Kumar Sahu, and Sanjeev Naval. “Influence of Jute Fibre on CBR Value of Expansive Soil.” Civil Engineering Journal 6, no. 6 (June 1, 2020): 1180–1194. doi:10.28991/cej-2020-03091539.

Han, Zhong, Sai K. Vanapalli, and Zehra Nil Kutlu. “Modeling Behavior of Friction Pile in Compacted Glacial Till.” International Journal of Geomechanics 16, no. 6 (December 2016). doi:10.1061/(asce)gm.1943-5622.0000659.

Adem, H H, and S K Vanapalli. “Constitutive Modeling Approach for Estimating1-Dheave with Respect to Time for Expansive Soils.” International Journal of Geotechnical Engineering 7, no. 2 (April 2013): 199–204. doi:10.1179/1938636213z.00000000024.

Vu, Hung Q, and Delwyn G Fredlund. “Challenges to Modelling Heave in Expansive Soils.” Canadian Geotechnical Journal 43, no. 12 (December 1, 2006): 1249–1272. doi:10.1139/t06-073.

Randeniya, Chamal, D.J. Robert, Chun-Qing Li, and Jayantha Kodikara. “Large-Scale Experimental Evaluation of Soil Saturation Effect on Behaviour of Buried Pipes Under Operational Loads.” Canadian Geotechnical Journal 57, no. 2 (February 2020): 205–220. doi:10.1139/cgj-2018-0544.

Robert, D. J., K. Soga, T. D. O’Rourke, and T. Sakanoue. “Lateral Load-Displacement Behavior of Pipelines in Unsaturated Sands.” Journal of Geotechnical and Geoenvironmental Engineering 142, no. 11 (November 2016): 04016060. doi:10.1061/(asce)gt.1943-5606.0001504.

Huang, Scott L., Kun Yang, Satoshi Akagawa, Masami Fukuda, and Shunji Kanie. “Frost Heave Induced Pipe Strain of an Experimental Chilled Gas Pipeline.” Innovative Materials and Design for Sustainable Transportation Infrastructure (June 2015). doi:10.1061/9780784479278.037.

Rajeev, Pathmanathan, and Jayantha Kodikara. “Numerical Analysis of an Experimental Pipe Buried in Swelling Soil.” Computers and Geotechnics 38, no. 7 (November 2011): 897–904. doi:10.1016/j.compgeo.2011.06.005.

Robert, Dilan, and Kenichi Soga. “Soil-Pipeline Interaction in Unsaturated Soils.” Mechanics of Unsaturated Geomaterials (March 7, 2013): 303–325. doi:10.1002/9781118616871.ch13.

Al-Khazaali, Mohammed, Sai K. Vanapalli, and Won Taek Oh. “Numerical Investigation of Soil–pipeline System Behavior Nearby Unsupported Excavation in Saturated and Unsaturated Glacial Till.” Canadian Geotechnical Journal 56, no. 1 (January 2019): 69–88. doi:10.1139/cgj-2017-0411.

Vazouras, Polynikis, Panos Dakoulas, and Spyros A. Karamanos. “Pipe–soil Interaction and Pipeline Performance Under Strike–slip Fault Movements.” Soil Dynamics and Earthquake Engineering 72 (May 2015): 48–65. doi:10.1016/j.soildyn.2015.01.014.

Oghabi, Mohsen, Mehdi Khoshvatan, and Aminaton Marto. “Evaluation of the Response of Buried Steel Pipelines Subjected to the Strike-Slip Fault Displacement.” Civil Engineering Journal 3, no. 9 (October 7, 2017): 661–671. doi:10.21859/cej-03093.

Saadeldin, Ramy, Yafei Hu, and Amr Henni. “Numerical Analysis of Buried Pipes Under Field Geo-Environmental Conditions.” International Journal of Geo-Engineering 6, no. 1 (June 26, 2015). doi:10.1186/s40703-015-0005-4.

Wahid. Chettah, “Investigation des propriétés minéralogiques et géomécaniques des terrains en mouvement dans la ville de Mila « Nord-Est d’Algérie »”, Thèse de Magistère, University of Batna 1 Hadj Lakhdhar, Batna, Algérie, 2009.

Athmania, Djamel, Abdelkader Benaissa, Achour Hammadi, and Mounir Bouassida. “Clay and Marl Formation Susceptibility in Mila Province, Algeria.” Geotechnical and Geological Engineering 28, no. 6 (June 23, 2010): 805–813. doi:10.1007/s10706-010-9341-5.

Azzedine. Mebarki. “HYDROLOGIE DES BASSINS DE L’EST ALGERIEN : RESSOURCES EN EAU, AMENAGEMENT, ET ENVIRONNEMENT” (2005 thèse de doctorat d’etat, University of Mentouri, Constantine.

GeoSlope International Ltd, Sigma/W user’s guide for stress-deformation analysis. GEO-SLOPE International Ltd, Calgary, AB, Canada, 2007.

Al-Khazaali, Mohammed, and Sai K. Vanapalli. “A Novel Experimental Technique to Investigate Soil–Pipeline Interaction Under Axial Loading in Saturated and Unsaturated Sands.” Geotechnical Testing Journal 43, no. 1 (March 15, 2019): 20180059. doi:10.1520/gtj20180059.

Qi, Shunchao, and Sai K. Vanapalli. “Hydro-Mechanical Coupling Effect on Surficial Layer Stability of Unsaturated Expansive Soil Slopes.” Computers and Geotechnics 70 (October 2015): 68–82. doi:10.1016/j.compgeo.2015.07.006.

Bahrami Balfeh Teimouri, Atanaz, and Ahad Bagherzadeh Khalkhali. “Stability Control of Narmab Dam and Sensitivity Analysis of Reliability Coefficients.” Civil Engineering Journal 4, no. 9 (September 30, 2018): 2197. doi:10.28991/cej-03091150.

Vu, Hung Q, and Delwyn G Fredlund. “The Prediction of One-, Two-, and Three-Dimensional Heave in Expansive Soils.” Canadian Geotechnical Journal 41, no. 4 (August 1, 2004): 713–737. doi:10.1139/t04-023.

van Genuchten, M. Th. “A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils.” Soil Science Society of America Journal 44, no. 5 (September 1980): 892–898. doi:10.2136/sssaj1980.03615995004400050002x.

Fredlund, D.G., and Anqing Xing. “Equations for the Soil-Water Characteristic Curve.” Canadian Geotechnical Journal 31, no. 4 (August 1, 1994): 521–532. doi:10.1139/t94-061.

Vazouras, Polynikis, Spyros A. Karamanos, and Panos Dakoulas. “Finite Element Analysis of Buried Steel Pipelines Under Strike-Slip Fault Displacements.” Soil Dynamics and Earthquake Engineering 30, no. 11 (November 2010): 1361–1376. doi:10.1016/j.soildyn.2010.06.011.

Azam, Shahid, Imran Shah, Mavinakere E. Raghunandan, and Maki Ito. “Study on Swelling Properties of an Expansive Soil Deposit in Saskatchewan, Canada.” Bulletin of Engineering Geology and the Environment 72, no. 1 (January 6, 2013): 25–35. doi:10.1007/s10064-012-0457-0.

Oh, Won Taek, Sai K. Vanapalli, and Anand J. Puppala. “Semi-Empirical Model for the Prediction of Modulus of Elasticity for Unsaturated Soils.” Canadian Geotechnical Journal 46, no. 8 (August 2009): 903–914. doi:10.1139/t09-030.

Zhang, Junhui, Junhui Peng, Jue Li, and Jianlong Zheng. “Variation of Resilient Modulus with Soil Suction for Cohesive Soils in South China.” International Journal of Civil Engineering 16, no. 12 (May 30, 2018): 1655–1667. doi:10.1007/s40999-018-0315-y.

Adem, Hana H., and Sai K. Vanapalli. “Prediction of the Modulus of Elasticity of Compacted Unsaturated Expansive Soils.” International Journal of Geotechnical Engineering 9, no. 2 (March 18, 2014): 163–175. doi:10.1179/1939787914y.0000000050.

Adem, Hana H., and Sai K. Vanapalli. “Elasticity Moduli of Expansive Soils from Dimensional Analysis.” Geotechnical Research 1, no. 2 (June 2014): 60–72. doi:10.1680/gr.14.00006.

Qi, Shunchao, and Sai K. Vanapalli. “Influence of Swelling Behavior on the Stability of an Infinite Unsaturated Expansive Soil Slope.” Computers and Geotechnics 76 (June 2016): 154–169. doi:10.1016/j.compgeo.2016.02.018.

Full Text: PDF

DOI: 10.28991/cej-2020-03091585


  • There are currently no refbacks.

Copyright (c) 2020 mohammed Bouatia

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.