Shrinkage Behavior of Conventional and Nonconventional Concrete: A Review

Ahmed Adel Emhemed Elzokra, Ausamah Al Houri, Ahed Habib, Maan Habib, Ahmad B. Malkawi

Abstract


Concrete is indeed one of the most consumed construction materials all over the world. In spite of that, its behavior towards absolute volume change is still faced with uncertainties in terms of chemical and physical reactions at different stages of its life span, starting from the early time of hydration process, which depends on various factors including water/cement ratio, concrete proportioning and surrounding environmental conditions. This interest in understanding and defining the different types of shrinkage and the factors impacting each one is driven by the importance of these volumetric variations in determining the concrete permeability, which ultimately controls its durability. Many studies have shown that the total prevention of concrete from undergoing shrinkage is impractical. However, different practices have been used to control various types of shrinkage in concrete and limit its magnitude. This paper provides a detailed review of the major and latest findings regarding concrete shrinkage types, influencing parameters, and their impacts on concrete properties. Also, it discusses the efficiency of the available chemical and mineral admixtures in controlling the shrinkage of concrete.


Keywords


Shrinkage; Autogenous Shrinkage; Plastic Shrinkage; Crack; Conventional Concrete; Nonconventional Concrete.

References


Holt, E. "Contribution of mixture design to chemical and autogenous shrinkage of concrete at early ages." Cement and Concrete Research 35 (2005): 464-72. doi:10.1016/j.cemconres.2004.05.009.

Al-Gburi, M. Restraint effects in early age concrete structures. Luleå University of Technology, 2015, doi: 10.2749/101686614x14043795570570.

Holt, E. E. Early age autogenous shrinkage of concrete. Finland: Technical Research Centre of Finland, 2001, doi:10.1201/9781482272123-23.

Thelandersson, S., A. Mårtensson and O. Dahlblom. "Tension softening and cracking in drying concrete." Materials and Structures 21 (1988): 416 - 24. doi:10.1007/bf02472321.

Al Houri, A., A. Habib, A. Elzokra and M. Habib. "Tensile testing of soils: History, equipment and methodologies." Civil Engineering Journal 6 (2020): 591-601. doi:10.28991/cej-2020-03091494.

Gilbert, R. I. "Cracking caused by early-age deformation of concrete-prediction and control." Presented at Procedia Engineering, 2017. Elsevier Ltd, 172, 13-22. doi:10.1016/j.proeng.2017.02.012.

Sofi, M., P. Mendis and D. Baweja. Early age concrete thermal and creep effects: Relevance to anchorage zones of post-tensioned members protective structures view project ductility design of very-high strength reinforced concrete (vhsc) (100-50 mpa) columns view project. 2008, doi:10.1201/b10571-46.

Hatami, B., A. M. Ramezanianpour and A. S. Daryan. "Investigation on the effect of shrinkage reducing admixtures on shrinkage and durability of high-performance concrete." Journal of Testing and Evaluation 46 (2017): 141-50. doi:10.1520/jte20170055.

Hu, X., Z. Shi, C. Shi, Z. Wu, B. Tong, Z. Ou and G. de Schutter. "Drying shrinkage and cracking resistance of concrete made with ternary cementitious components." Construction and Building Materials 149 (2017): 406-15. doi:10.1016/j.conbuildmat.2017.05.113.

Jasiczak, J., P. Szymański and P. Nowotarski. "Wider perspective of testing early shrinkage of concrete modified with admixtures in changeable w/c ratio as innovative solution in civil engineering." Procedia Engineering 122 (2015): 310-19. doi:10.1016/j.proeng.2015.10.041.

Jianxia, S. "Durability design of concrete hydropower structures." In Comprehensive renewable energy. S. Jianxia. 6. Elsevier Ltd, 2012, 377-403. DOI:10.1016/b978-0-08-087872-0.00619-3.

ACI. Aci 116r cement and concrete terminology. American Concrete Institute, 2000.

Tazawa, E.-I. and S. Miyazawa. Experimental, study on mechanism of autogenous shrinkage of concrete. 1995, 1633-38.

Zhang, M. H., C. T. Tam and M. P. Leow. "Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete." Cement and Concrete Research 33 (2003): 1687-94. doi:10.1016/s0008-8846(03)00149-2.

Kohno, K., T. Okamoto, Y. Isikawa, T. Sibata and H. Mori. Effects of artificial lightweight aggregate on autogenous shrinkage of concrete. 1999, 611-14. doi:10.1016/s0008-8846(98)00202-6.

Walker, H. N., L. Stephen and P. E. Stutrman. Petrographic methods of examining hardened concrete: A petrographic manual. 2006.

Cusson, D. and T. Hoogeveen. "Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking." Cement and Concrete Research 38 (2008): 757-65. doi: 10.1016/j.cemconres.2008.02.001.

Kuhlman, L. A. Cracks in lmc overlays; how do they get there; how serious are they; what to do about them. Washington, DC: 1991.

Cabrera, J. G., A. R. Cusens and Y. Brookes-Wang. Effect of superplasticizers on the plastic shrinkage of concrete. 1992, 149-55. doi:10.1680/macr.1992.44.160.149.

ACI. Aci 224r-01 control of cracking in concrete structures. American Concrete Institute, 2001, doi:10.14359/10632.

Almusallam, A. A., M. Maslehuddin, M. Abdul-Waris and M. M. Khan. Effect of mix proportions on plastic shrinkage cracking of concrete in hot environments. 1998, 353358. doi:10.1016/s0950-0618(98)00019-1.

Qi, C., J. Weiss and J. Olek. "Characterization of plastic shrinkage cracking in fiber reinforced concrete using image analysis and a modified weibull function." Materials and Structures 36 (2003): 386-95. doi:10.1007/bf02481064.

Rossi, P. and P. Acker. "A new approach to the basic creep and relaxation of concrete." Cement and Concrete Research 18 (1988): 799-803. doi:10.1016/0008-8846(88)90105-6.

Houst, Y. F. "Carbonation shrinkage of hydrated cement paste." Presented at 4th CANMET/ACI International Conference on Durability of Concrete, Ottawa, Canada, 1997. 481-91.

Zhai, X., Y. Wang and H. Wang. "Thermal stress analysis of concrete wall of lng tank during construction period." Materials and Structures 49 (2015): 1-14. doi:10.1617/s11527-015-0656-9.

Zhang, J., Y. D. Han and Y. Gao. "Effects of water-binder ratio and coarse aggregate content on interior humidity, autogenous shrinkage, and drying shrinkage of concrete." Journal of Materials in Civil Engineering 26 (2013): 184-89. doi:10.1061/(asce)mt.1943-5533.0000799.

Jiajun, Y., H. U. Shuguang, W. Fazhou, Z. Yufei and L. Zhichao. " Effect of pre-wetted light-weight aggregate on internal relative humidity and autogenous shrinkage of concrete." Journal of Wuhan University of Technology-Mater. Sci. Ed. 21 (2006): 134-37. doi:10.1007/bf02861491.

Nabil M. Al-Akhras, M. J. S. A. B. M. "Evaluation of shear-deficient lightweight rc beams retrofitted with adhesively bonded cfrp sheets." European Journal of Environmental and Civil Engineering 20 (2016): 899-913. doi:10.1080/19648189.2015.1084383.

Zielinski, A., M. Kaszynska, S. Skibicki and N. Olczyk. "Development of autogenous shrinkage deformation and strength parameters in self-consolidating concrete with light and natural aggregate." Presented at IOP Conference Series: Materials Science and Engineering, 2019. Institute of Physics Publishing, 471, doi:10.1088/1757-899x/471/3/032019.

Fujiwara, T. "Effect of aggregate on drying shrinkage of concrete." Journal of Advanced Concrete Technology 6 (2008): 31-44. doi:10.3151/jact.6.31.

B Malkawi, A., J. Aladwan and M. Al-Salaheen. "Agricultural palm oil wastes for development of structural lightweight concrete." International Journal of Civil Engineering and Technology 10 (2019).

Gómez Soberón, J. M. V. "Shrinkage of concrete with replacement of aggregate with recycled concrete aggregate." Presented at 5th International Conference of the American-Concrete-Institute, Cancun, MEXICO, 2002. 209, 475-95. doi:10.1680/scc.31777.0057.

Liu, Q. and X. N. Zhang. "Experimental study on shrinkage of concrete with recycle crushed brick coarse aggregate." In Applied Mechanics and Materials 438 (2013): 141-44. doi:10.4028/www.scientific.net/amm.438-439.141.

Santos, J. R., F. A. Branco and J. de Brito. "Compressive strength, modulus of elasticity and drying shrinkage of concrete with coarse recycled concrete." In ΧΧΧ IAHS–World Congress on Housing Housing Construction-An Interdisciplinary Task (2002): 1685-91.

Domingo-Cabo, A., C. Lázaro, F. López-Gayarre, M. A. Serrano-López, P. Serna and J. O. Castaño-Tabares. "Creep and shrinkage of recycled aggregate concrete." Construction and Building Materials 23 (2009): 2545-53. doi:10.1016/j.conbuildmat.2009.02.018.

Soomro, F. A., B. A. Memon, M. Oad, A. H. Buller and Z. A. Tunio. "Shrinkage of concrete panels made with recyclable concrete aggregates." Engineering, Technology & Applied Science Research 9 (2019): 4027-29.

Bravo, M., J. de Brito, L. Evangelista and J. Pacheco. "Durability and shrinkage of concrete with cdw as recycled aggregates: Benefits from superplasticizer's incorporation and influence of cdw composition." Construction and Building Materials 168 (2018): 818-30. doi:10.1016/j.conbuildmat.2018.02.176.

Tang, W. C., Y. Lo and A. Nadeem. "Mechanical and drying shrinkage properties of structural-graded polystyrene aggregate concrete." Cement and Concrete Composites 30 (2008): 403-09. doi:10.1016/j.cemconcomp.2008.01.002.

Bravo, M. and J. De Brito. "Concrete made with used tyre aggregate: Durability-related performance." Journal of Cleaner Production 25 (2012): 42-50. doi:10.1016/j.jclepro.2011.11.066.

Ballim, Y. The effect of shale in quartzite aggregate on the creep and shrinkage of concrete-a comparison with rilem model b3. 2000, 235-42. doi:10.1007/bf02479333.

Yagi, S., C. Aquino, M. Inoue and T. Okamoto. "Volume change of limestone and its effects on drying shrinkage of concrete." In Advanced Materials Research 168 (2011): 738-41. doi:10.4028/www.scientific.net/amr.168-170.738.

Kwan, A. K. H., W. W. S. Fung and H. H. C. Wong. "Reducing drying shrinkage of concrete by treatment of aggregate." Magazine of concrete research 62 (2010): 435-42. doi:10.1680/macr.2010.62.6.435.

Feng, X. X., Xi, X. L., J. W. Cai, H. J. Chai and Y. Z. Song. "Investigation of drying shrinkage of concrete prepared with iron mine tailings." In Key Engineering Materials 477 (2011): 37-41. doi:10.4028/www.scientific.net/kem.477.37.

Collins, F. and J. G. Sanjayan. "Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage." Cement and Concrete Research 30 (2000): 791-98. doi:10.1016/s0008-8846(00)00243-x.

Lee, K. M., H. K. Lee, S. H. Lee and G. Y. Kim. "Autogenous shrinkage of concrete containing granulated blast-furnace slag." Cement and Concrete Research 36 (2006): 1279-85. doi:10.1016/j.cemconres.2006.01.005.

Wang, T. C., Q. M. Peng, W. L. Liu and L. F. Feng. "Study on shrinkage of concrete based on bp neural network." In Advanced Materials Research 163 (2011): 3249-57. doi:10.4028/www.scientific.net/amr.163-167.3249.

Yuan, J., W. D. Lindquist, D. Darwin and J. Browning. "Effect of slag cement on drying shrinkage of concrete." American Concrete Institute 112 (2015): 267-76. DOI:10.14359/51687129.

Liu, J. and D. Wang. "Influence of steel slag-silica fume composite mineral admixture on the properties of concrete." Powder Technology 320 (2017): 230-38. doi:10.1016/j.powtec.2017.07.052.

Yang, J., Q. Wang and Y. Zhou. "Influence of curing time on the drying shrinkage of concretes with different binders and water-to-binder ratios." Advances in Materials Science and Engineering (2017): doi:10.1155/2017/2695435.

Ghodousi, P., M. H. Afshar, H. Ketabchi and E. Rasa. Study of early-age creep and shrinkage of concrete containing iranian pozzolans: An experimental comparative study. 2009.

Fauzi, A., M. F. Nuruddin, A. B. Malkawi and M. M. A. B. Abdullah. "Study of fly ash characterization as a cementitious material." Presented at Procedia Engineering, 2016. 148, doi:10.1016/j.proeng.2016.06.535.

Raut, M. V. and S. V. Deo. Use of high volume fly ash on early age shrinkage in concrete. 2018, 2036-46.

Wu, X., H. Li, Q. Li and Z. Wan. "Experimental study on the influences of fly-ash and slag on the plastic shrinkage of concrete." Presented at 6th International Conference on Information Engineering for Mechanics and Materials (ICIMM), Huhhot, PEOPLES R CHINA, 2016. 97, 271-76. doi:10.2991/icimm-16.2016.53.

Mokarem, D. W., R. E. Weyers and D. S. Lane. "Development of a shrinkage performance specifications and prediction model analysis for supplemental cementitious material concrete mixtures." Cement and Concrete Research 35 (2005): 918-25. doi:10.1016/j.cemconres.2004.09.013.

Wu, P., C. Wang, Y. Zhang, L. Chen, W. Qian, Z. Liu, C. Jin and L. Li. "Properties of cementitious composites containing active/inter mineral admixtures." Polish Journal of Environmental Studies 27 (2018): 1323-30. doi:10.15244/pjoes/76503.

Wang, Q., J. Yang and H. Chen. "Long-term properties of concrete containing limestone powder." Materials and Structures 50 (2017): doi:10.1617/s11527-017-1040-8.

Li, F. L. and Q. Zhu. "Drying shrinkage of concrete affected by content of stone powder in proto-machine-made sand." In Advanced Materials Research 152 (2011): 1176-79. doi:10.4028/www.scientific.net/amr.152-153.1176.

Wang, B., Y. P. Ding, J. Gao, J. F. Sun, M. M. Cui and L. Han. "Effect of limestone powder on autogenous shrinkage of concrete." In Applied Mechanics and Materials 88 (2011): 767-71. doi:10.4028/www.scientific.net/amm.88-89.767.

Kwan, A. K., M. McKinley and J. J. Chen. "Adding limestone fines as cement paste replacement to reduce shrinkage of concrete." Magazine of Concrete Research 65 (2013): 942-50. doi:10.1680/macr.13.00028.

Belferrag, A., A. Kriker, S. Abboudi and S. T. Bi. "Effect of granulometric correction of dune sand and pneumatic waste metal fibers on shrinkage of concrete in arid climates." Journal of Cleaner Production 112 (2016): 3048-56. doi:10.1016/j.jclepro.2015.11.007.

Saand, A., M. A. Keerio and D. k. Bangwar. "Effect of metakaolin developed from local natural material soorh on workability, compressive strength, ultrasonic pulse velocity and drying shrinkage of concrete." Architecture, Civil Engineering, Environment 10 (2017): 115-22. doi:10.21307/acee-2017-025.

Brooks, J. J. and M. M. Johari. "Effect of metakaolin on creep and shrinkage of concrete." Cement and concrete composites 23 (2001 ): 495-502. doi:10.1016/s0958-9465(00)00095-0.

Dhir, R. K., J. d. Brito, G. S. Ghataora and C. Q. Lye. "Use of glass cullet as a sand component." In Sustainable construction materials. R. K. Dhir, J. d. Brito, G. S. Ghataora and C. Q. Lye. Elsevier, 2018, 167-229. doi:10.1016/b978-0-08-100984-0.00005-9.

Montani, S. "Possibilities to control concrete shrinkage by means of chemical admixtures." CHIMIA International Journal for Chemistry 52 (1998): 208-11.

Qian, X. Q., T. Meng, S. L. Zhan, M. H. Fang and K. L. Qian. "Influence of shrinkage reduce agent on early age autogenous shrinkage of concrete." In Key Engineering Materials 302 (2006): 211-17. doi:10.4028/www.scientific.net/kem.302-303.211.

Qin, H. G., Z. H. Fei, W. Guo and Q. Tian. "The effects of water-reducer on early-age plastic shrinkage of concrete." In Applied Mechanics and Materials 174 (2012): 1113-18. doi:10.4028/www.scientific.net/amm.174-177.1113.

Craeye, B., G. De Schutter, B. Desmet, J. Vantomme, G. Heirman, L. Vandewalle, Ö. Cizer, S. Aggoun and E. H. Kadri. "Effect of mineral filler type on autogenous shrinkage of self-compacting concrete." Cement and Concrete Research 40 (2010): 908-13. doi:10.1016/j.cemconres.2010.01.014.

Rozière, E., S. Granger, P. Turcry and A. Loukili. "Influence of paste volume on shrinkage cracking and fracture properties of self-compacting concrete." Cement and Concrete Composites 29 (2007): 626-36. doi:10.1016/j.cemconcomp.2007.03.010

Mora-Ruacho, J., R. Gettu, C. Olazabal, M. Martin and A. Aguado. "Effect of the incorporation of fiber on the plastic shrinkage of concrete." Presented at 5th RILEM Symposium on Fibre-Reinforced Concretes (FRC), LYON, FRANCE, 2000. 15, 705-14.

Sicard, V., R. Francois, E. Ringot and G. r. Pons. "Influence of creep and shrinkage on cracking in high strength concrete." Cement and Concrete Research 22 (1992): 159-68. doi:10.1016/0008-8846(92)90146-m.

Persson, B. "Eight-year exploration of shrinkage in high-performance concrete." Cement and Concrete Research 32 (2002): 1229-37. doi:10.1016/s0008-8846(02)00764-0.

Shaaban, I. G., M. Saidani, M. F. Nuruddin, A. Malkawi and T. Mustafa. "Serviceability behavior of normal and high-strength reinforced concrete t-beams." European Journal of materials Science and Engineering (2018).

Shen, D., C. Liu, Z. Feng, S. Zhu and C. Liang. "Influence of ground granulated blast furnace slag on the early-age anti-cracking property of internally cured concrete." Construction and Building Materials 223 (2019): 233-43. doi:10.1016/j.conbuildmat.2019.06.149.

Ullah, F., F. Al-Neshawy and J. Punkki. "Early age autogenous shrinkage of fibre reinforced concrete." Nordic Concrete Research 59 (2018): 59-72. doi:10.2478/ncr-2018-0015.

Alekrish, A. A. and S. H. Alsayed. "Shrinkage of fibre and reinforced fibre concrete beams in hot-dry climate." Cement and Concrete Composites 16 (1994): 299-307. doi:10.1016/0958-9465(94)90042-6.

Barr, B., S. B. Hoseinian and M. A. Beygi. "Shrinkage of concrete stored in natural environments." Cement and Concrete Composites 25 (2003): 19-29. doi:10.1016/s0958-9465(01)00044-0.

Banthia, N. and R. Gupta. "Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete." Cement and Concrete Research 36 (2006): 1263-67. doi:10.1016/j.cemconres.2006.01.010.

Wongtanakitcharoen, T. and A. E. Naaman. "Unrestrained early age shrinkage of concrete with polypropylene, pva, and carbon fibers." Materials and structures 40 (2007): 289-300. doi:10.1617/s11527-006-9106-z.

Pelisser, F., A. B. D. S. S. Neto, H. L. L. Rovere and R. C. D. A. Pinto. "Effect of the addition of synthetic fibers to concrete thin slabs on plastic shrinkage cracking." Construction and Building Materials 24 (2010): 2171-76. doi:10.1016/j.conbuildmat.2010.04.041.

Boghossian, E. and L. D. Wegner. "Use of flax fibres to reduce plastic shrinkage cracking in concrete." Cement and Concrete Composites 30 (2008): 929-37. doi:10.1016/j.cemconcomp.2008.09.003.

Ruijie, M. A., J. Yang, Y. Liu and X. Zheng. "Influence of length-to-diameter ratio on shrinkage of basalt fiber concrete." Presented at 3rd International Conference on Applied Materials and Manufacturing Technology (ICAMMT, Changsha, PEOPLES R CHINA, 2017. IOP Publishing, 242, doi:10.1088/1757-899x/242/1/012027.

Pacheco-Torgal, F., Y. Ding and S. Jalali. "Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): An overview." Construction and Building Materials 30 (2012): 714-24. doi:10.1016/j.conbuildmat.2011.11.047.

Hawreen, A. and J. A. Bogas. "Creep, shrinkage and mechanical properties of concrete reinforced with different types of carbon nanotubes." Construction and Building Materials 198 (2019): 70-81. doi:10.1016/j.conbuildmat.2018.11.253.

Dang, J., J. Zhao and Z. Du. "Effect of superabsorbent polymer on the properties of concrete." Polymers 9 (2017).

Shen, D., X. Wang, D. Cheng, J. Zhang and G. Jiang. "Effect of internal curing with super absorbent polymers on autogenous shrinkage of concrete at early age." Construction and Building Materials 106 (2016): 512-22. doi:10.1016/j.conbuildmat.2015.12.115.

Wyrzykowski, M., S. I. Igarashi, P. Lura and V. Mechtcherine. "Recommendation of rilem tc 260-rsc: Using superabsorbent polymers (sap) to mitigate autogenous shrinkage." Materials and Structures/Materiaux et Constructions 51 (2018). doi:10.1617/s11527-018-1241-9.

Wang, F., Y. Zhou, B. Peng, Z. Liu and S. Hu. "Autogenous shrinkage of concrete with super-absorbent polymer." ACI Materials Journal 106 (2009): 123. doi:10.14359/56458.

Won, J. P., J. H. Kim, C. G. Park, J. W. Kang and H. Y. Kim. "Shrinkage cracking of styrene butadiene polymeric emulsion-modified concrete using rapid-hardening cement." Journal of Applied Polymer Science 112 (2009): 2229-34. doi:10.1002/app.29733.

Habib, A., U. Yildirim and O. Eren. "Mechanical and dynamic properties of high strength concrete with well graded coarse and fine tire rubber." Construction and Building Materials, 246 (2020): 118502. doi:10.1016/j.conbuildmat.2020.118502.

Habib, A., U. Yildirim and O. Eren. "Column repair and strengthening using rc jacketing: A brief state-of-the-art review." Innovative Infrastructure Solutions 5 (2020): 1-11. doi:10.1007/s41062-020-00329-4.

Habib, A., U. Yidirim and O. Eren. "Properties of high-strength concrete containing well graded rubber particles." IOP Conference Series Materials Science and Engineering 800 (2020): 012018. doi:10.1088/1757-899x/800/1/012018.

Sukontasukkul, P. and K. Tiamlom. "Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size." Construction and Building Materials 29 (2012): 520-26. doi:10.1016/j.conbuildmat.2011.07.032.

Si, R., S. Guo and Q. Dai. "Durability performance of rubberized mortar and concrete with naoh-solution treated rubber particles." Construction and Building Materials 153 (2017): 496-505. doi:10.1016/j.conbuildmat.2017.07.085.

Najim, K. B. and M. R. Hall. A review of the fresh/hardened properties and applications for plain- (prc) and self-compacting rubberised concrete (scrc). 24. Elsevier Ltd, 2010, 2043-51. doi:10.1016/j.conbuildmat.2010.04.056.

Saito, M., M. Kawamura and S. Arakawa. "Role of aggregate in the shrinkage of ordinary portland and expansive cement concrete." Cement and Concrete Composites 13 (1982): 115-21. doi:10.1016/0958-9465(91)90006-4.

Malkawi, A. B., M. Habib, J. Aladwan and Y. Alzubi. "Engineering properties of fibre reinforced lightweight geopolymer concrete using palm oil biowastes." Australian Journal of Civil Engineering 18 (2020): 82-92. doi:10.1080/14488353.2020.1721954.

Nuruddin, M. F., A. B. Malkawi, A. Fauzi, B. S. Mohammed and H. M. Almattarneh. "Geopolymer concrete for structural use: Recent findings and limitations." Presented at IOP Conference Series: Materials Science and Engineering, 2016. 133, doi:10.1088/1757-899x/133/1/012021.

Malkawi, A. B., M. Habib, Y. Alzubi and J. Aladwan. "Engineering properties of lightweight geopolymer concrete using palm oil clinker aggregate." International Journal 18 (2020): 132-39. doi:10.21660/2020.65.89948.

Fauzi, A., M. F. Nuruddin, A. B. Malkawi, M. M. A. B. Abdullah and B. S. Mohammed. Effect of alkaline solution to fly ash ratio on geopolymer mortar properties. 2017, doi:10.4028/www.scientific.net/kem.733.85.

Nuruddin, M. F., A. B. Malkawi, A. Fauzi, B. S. Mohammed and H. M. Al-Mattarneh. "Effects of alkaline solution on the microstructure of hcfa geopolymers." Presented at Engineering Challenges for Sustainable Future - Proceedings of the 3rd International Conference on Civil, offshore and Environmental Engineering, ICCOEE 2016, 2016. doi:10.1201/b21942-102.

Wallah, S. E. "Drying shrinkage of heat-cured fly ash-based geopolymer concrete." Modern Applied Science 3 (2009). doi:10.5539/mas.v3n12p14.

Nuruddin, M. F., A. B. Malkawi, A. Fauzi, B. S. Mohammed and H. M. Almattarneh. "Evolution of geopolymer binders: A review." Presented at IOP Conference Series: Materials Science and Engineering, 2016. 133, doi:10.1088/1757-899x/133/1/012052.

Collins, F. and J. G. Sanjayan. "Effect of pore size distribution on drying shrinking of alkali-activated slag concrete." Cement and Concrete Research 30 (2000): 1401-06. doi:10.1016/s0008-8846(00)00327-6.

Mermerdaş, K., Z. Algın and Ş. Ekmen. "Experimental assessment and optimization of mix parameters of fly ash-based lightweight geopolymer mortar with respect to shrinkage and strength." Journal of Building Engineering 31 (2020): 101351. doi:10.1016/j.jobe.2020.101351.


Full Text: PDF

DOI: 10.28991/cej-2020-03091586

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Ahmed Adel Emhemed Elzokra, Ausamah Al Houri, Ahed Habib, Maan Habib, Ahmad Malkawi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message