Coal ash Portland Cement Mortars Sulphate Resistance

Esperanza Menéndez, Cristina Argiz, Miguel Ángel Sanjuán

Abstract


Coal fly ash (CFA), coal bottom ash (CBA) are residues produced in thermo-electrical power stations as result of the coal combustion in the same boiler. Therefore, some characteristics of the coal fly ash (CFA) are comparable with those of the coal bottom ash (CBA). Nevertheless, coal bottom ash size is larger than coal fly ash one. Consequently, it was found that it is necessary to grind the coal bottom ash (CBA) to reach a similar size to that one of the CFA. The objective of this paper is to evaluate the performance of Portland cement mortars made with coal fly ash (CFA), coal bottom ash (CBA) or mixes (CFA+CBA), against sulphate attack. The methodology is based on the expansion of slender bars submerged in a sodium sulphate solution (5%) according to the ASTM C-1012/C1012-13 standard. It has been found that mortars elaborated with CEM I 42.5 N (without ashes) presented the largest expansion (0.09%) after a testing period of 330 days. Mortars made with CEM II/A-V exhibited lower expansion (0.03%). Summing up, it can be established that mortar expansion decreases when the coal ash amount increases, independently of the type of coal ash employed. The novelty of this paper relies on the comparison between the performances of Portland cement mortars made with coal fly ash (CFA) or coal bottom ash (CBA) exposed to external sulphate attack.

 

Doi: 10.28991/cej-2021-03091640

Full Text: PDF


Keywords


Mortars; Sulphate Resistance; Durability; Coal Ash; Portland Cement.

References


Sanjuán, Miguel Ángel, Carmen Andrade, Pedro Mora, and Aniceto Zaragoza. “Carbon Dioxide Uptake by Cement-Based Materials: A Spanish Case Study.” Applied Sciences 10, no. 1 (January 2, 2020): 339. doi:10.3390/app10010339.

Kulkarni, Prakash B., Pravin Dinkar Nemade, and Manoj Pandurang Wagh. “Healing of Generated Cracks in Cement Mortar Using MICP.” Civil Engineering Journal 6, no. 4 (April 1, 2020): 679–692. doi:10.28991/cej-2020-03091500.

Sanjuán, Miguel Angel, Cristina Argiz, Pedro Mora, and Aniceto Zaragoza. “Carbon Dioxide Uptake in the Roadmap 2050 of the Spanish Cement Industry.” Energies 13, no. 13 (July 3, 2020): 3452. doi:10.3390/en13133452.

Herath, Charith, Chamila Gunasekara, David W. Law, and Sujeeva Setunge. “Performance of High Volume Fly Ash Concrete Incorporating Additives: A Systematic Literature Review.” Construction and Building Materials 258 (October 2020): 120606. doi:10.1016/j.conbuildmat.2020.120606.

Sanjuán, M. A., and C. Argiz. “La Nueva Norma Europea de Especificaciones de Cementos Comunes UNE-EN 197-1:2011.” Materiales de Construcción 62, no. 307 (September 20, 2012): 425–430. doi:10.3989/mc.2012.07711.

Silva, Yimmy Fernando, and Silvio Delvasto. “Sulfate Attack Resistance of Self-Compacting Concrete with Residue of Masonry.” Construction and Building Materials 268 (January 2021): 121095. doi:10.1016/j.conbuildmat.2020.121095.

Tang, Zhuo, Wengui Li, Guojun Ke, John L. Zhou, and Vivian W.Y. Tam. “Sulfate Attack Resistance of Sustainable Concrete Incorporating Various Industrial Solid Wastes.” Journal of Cleaner Production 218 (May 2019): 810–822. doi:10.1016/j.jclepro.2019.01.337.

Veronelli, D. J. E., and J. Calleja. “Nuevos Puntos de Vista Sobre El Ataque de Sulfatos y Cloruros Alcalinos Al Hormigón.” Materiales de Construcción 30, no. 180 (December 30, 1980): 5–13. doi:10.3989/mc.1980.v30.i180.1054.

Collepardi M. A State-of-the-Art Review on Delayed Ettringite Attack on Concrete. Cem Concr Compos. 2003; 25: 401-407. http://dx.doi.org/10.1016/S0958-9465(02)00080-X

Skalny, Jan, and J. Pierce. "Sulfate attack: an overview." Materials Science of Concrete: Sulfate Attack Mechanisms, J. Marchand and JP Skalny, eds., The American Ceramic Society (1999): 49-64.

ACI 201.2R-08. “Guide to Durable Concrete” American Concrete Institute. Farmington Hills, MI, USA, 2008: 53 p.

Neville, Adam. “The Confused World of Sulfate Attack on Concrete.” Cement and Concrete Research 34, no. 8 (August 2004): 1275–1296. doi:10.1016/j.cemconres.2004.04.004.

Ramyar, K., and G. İnan. “Sodium Sulfate Attack on Plain and Blended Cements.” Building and Environment 42, no. 3 (March 2007): 1368–1372. doi:10.1016/j.buildenv.2005.11.015.

Santhanam, Manu, Menashi D. Cohen, and Jan Olek. “Effects of Gypsum Formation on the Performance of Cement Mortars during External Sulfate Attack.” Cement and Concrete Research 33, no. 3 (March 2003): 325–332. doi:10.1016/s0008-8846(02)00955-9.

ASTM C1012/C1012M-13. Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. ASTM International, West Conshohocken, PA.

ASTM Standard C 452-06. Standard Test Method for Potential expansion of Portland-cement Mortars Exposed to Sulfate. ASTM International, West Conshohocken, PA.

EN, CENNBN. "196-1: 2016—Methods of Testing Cement—Part 1: Determination of Strength." CEN: Brussel, Belgium (2016).

Sanjuán, M. A., C. Argiz, and E. Menéndez. “Efecto de La Adición de Mezclas de Ceniza Volante y Ceniza de Fondo Procedentes Del Carbón En La Resistencia Mecánica y Porosidad de Cementos Portland.” Materiales de Construcción 63, no. 309 (March 21, 2013): 49–64. doi:10.3989/mc.2013.03911.

Cohen, Menashi D., and Bryant Mather. "Sulfate attack on concrete: research needs." Materials Journal 88, no. 1 (1991): 62-69. Available online:https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/2382 (accessed on August 2020).

Biczok I. Concrete Corrosion and Concrete Protection, Chemical Publishing Company, New York, U.S. Chemical Publishing Co Inc. (1967): 548 p.

Santhanam, Manu, Menashi D Cohen, and Jan Olek. “Sulfate Attack Research — Whither Now?” Cement and Concrete Research 31, no. 6 (May 2001): 845–851. doi:10.1016/s0008-8846(01)00510-5.

Irassar, Edgardo F., and Oscar R. Batic. “Resistencia a Los Sulfatos Del Cemento Portland Normal Con Ceniza Volante.” Materiales de Construcción 39, no. 213 (March 30, 1989): 11–20. doi:10.3989/mc.1989.v39.i213.813.

Torii, K., K. Taniguchi, and M. Kawamura. “Sulfate Resistance of High Fly Ash Content Concrete.” Cement and Concrete Research 25, no. 4 (May 1995): 759–768. doi:10.1016/0008-8846(95)00066-l.

Al-Dulaijan, S.U., M. Maslehuddin, M.M. Al-Zahrani, A.M. Sharif, M. Shameem, and M. Ibrahim. “Sulfate Resistance of Plain and Blended Cements Exposed to Varying Concentrations of Sodium Sulfate.” Cement and Concrete Composites 25, no. 4–5 (May 2003): 429–437. doi:10.1016/s0958-9465(02)00083-5.

Chindaprasirt, P., P. Kanchanda, A. Sathonsaowaphak, and H.T. Cao. “Sulfate Resistance of Blended Cements Containing Fly Ash and Rice Husk Ash.” Construction and Building Materials 21, no. 6 (June 2007): 1356–1361. doi:10.1016/j.conbuildmat.2005.10.005.

Irassar, E.F. “Sulfate Resistance of Blended Cement: Prediction and Relation with Flexural Strength.” Cement and Concrete Research 20, no. 2 (March 1990): 209–218. doi:10.1016/0008-8846(90)90073-7.

Mangat, P.S., and J.M. El-Khatib. “Influence of Initial Curing on Sulphate Resistance of Blended Cement Concrete.” Cement and Concrete Research 22, no. 6 (November 1992): 1089–1100. doi:10.1016/0008-8846(92)90039-x.

Sersale, R., R. Cioffi, B. De Vito, G. Frigione, and F. Zenone. "Sulphate attack of carbonated and uncarbonated Portland and blended cement mortars." In Proceedings of the 10th international congress on the chemistry of cements, Gothenburg, Sweden, Paper 4iv017. (1997).

Aye, Thidar, and Chiaki T. Oguchi. “Resistance of Plain and Blended Cement Mortars Exposed to Severe Sulfate Attacks.” Construction and Building Materials 25, no. 6 (June 2011): 2988–2996. doi:10.1016/j.conbuildmat.2010.11.106.

Liu, Zanqun, Dehua Deng, Geert De Schutter, and Zhiwu Yu. “Micro-Analysis of ‘salt Weathering’ on Cement Paste.” Cement and Concrete Composites 33, no. 2 (February 2011): 179–191. doi:10.1016/j.cemconcomp.2010.10.010.

Steiger, Michael. “Crystal Growth in Porous materials—II: Influence of Crystal Size on the Crystallization Pressure.” Journal of Crystal Growth 282, no. 3–4 (September 2005): 470–481. doi:10.1016/j.jcrysgro.2005.05.008.

Neville, A.M. Properties of Concrete. New York, USA, 4th ed. John Wiley & Sons, (1996): 844 p.

Wedding, PA, and ER Dunstan. “A Possible Method for Identifying Fly Ashes That Will Improve the Sulfate Resistance of Concretes.” Cement, Concrete and Aggregates 2, no. 1 (1980): 20-30. doi:10.1520/cca10175j.

Tikalsky PJ, Carrasquillo RL, Snow PG. Sulfate resistance of concrete containing fly ash. In: Proceedings of the G.M. Idorn international symposium on durability of concrete, ACI SP-131, Detroit, USA. (1992): 255–265.

Nie, Qingke, Changjun Zhou, Xiang Shu, Qiang He, and Baoshan Huang. “Chemical, Mechanical, and Durability Properties of Concrete with Local Mineral Admixtures under Sulfate Environment in Northwest China.” Materials 7, no. 5 (May 13, 2014): 3772–3785. doi:10.3390/ma7053772.


Full Text: PDF

DOI: 10.28991/cej-2021-03091640

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Esperanza Menéndez, Cristina Argiz, Miguel Ángel Sanjuán

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message