Enhancement of Electrical and Mechanical Properties of Modified Asphalt Concrete with Graphite Powder
Abstract
Doi: 10.28991/CEJ-2022-08-01-09
Full Text: PDF
Keywords
References
Liu, X., Wu, S., Ye, Q., Qiu, J., & Li, B. (2008). Properties evaluation of asphalt-based composites with graphite and mine powders. In Construction and Building Materials 22(03). 121–126. doi:10.1016/j.conbuildmat.2006.10.004.
Park, D. W., Dessouky, S., & Hwang, S. Do. (2014). Thermophysical properties of graphite-modified asphalt mixture and numerical analyses for snow melting pavement. In Sustainability, Eco-Efficiency and Conservation in Transportation Infrastructure Asset Management - Proceedings of the 3rd International Conference on Tranportation Infrastructure, ICTI 2014 (pp. 87–94). doi:10.1201/b16730-15.
Wu, S., Mo, L., Shui, Z., & Chen, Z. (2005). Investigation of the conductivity of asphalt concrete containing conductive fillers. Carbon, 43(7), 1358–1363. doi:10.1016/j.carbon.2004.12.033.
Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete. Cement and Concrete Composites, 34(2), 172–184. doi:10.1016/j.cemconcomp.2011.09.009.
Wang, H., Yang, J., Liao, H., & Chen, X. (2016). Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers. Construction and Building Materials, 122(N), 184–190. doi:10.1016/j.conbuildmat.2016.06.063.
Wu, S., Li, B., Huang, J., & Liu, Z. (2008). Investigation of rheological properties of asphalt binders containing conductive fillers. Key Engineering Materials, 385–387, 753–756. doi:10.4028/www.scientific.net/kem.385-387.753.
Arabzadeh, A., Ceylan, H., Kim, S., Sassani, A., Gopalakrishnan, K., & Mina, M. (2018). Electrically-conductive asphalt mastic: Temperature dependence and heating efficiency. Materials and Design, 157, 303–313. doi:10.1016/j.matdes.2018.07.059.
Valdés, G., Pérez-Jiménez, F., & Botella, R. (2009). Ensayo Fénix, una Nueva Metodología para Medir la Resistencia a la Fisuración en Mezclas Asfálticas. Revista de La Construccion, 8(1), 114–125.
Vidal, G. V., Recasens, R. M., & Reguero, A. M. (2015). Assessment of the adhesive capacity of asphalt binders in the aggregate-binder bonds by means of new methodology. Revista de La Construccion, 14(1), 69–76. doi:10.4067/s0718-915x2015000100009.
Marsden, A. J., Papageorgiou, D. G., Vallés, C., Liscio, A., Palermo, V., Bissett, M. A., Young, R. J., & Kinloch, I. A. (2018). Electrical percolation in graphene-polymer composites. In 2D Materials (Vol. 5, Issue 3). doi:10.1088/2053-1583/aac055.
Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486–1498. doi:10.1016/j.compscitech.2008.06.018.
Sandler, J. K. W., Kirk, J. E., Kinloch, I. A., Shaffer, M. S. P., & Windle, A. H. (2003). Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer, 44(19), 5893–5899. doi:10.1016/s0032-3861(03)00539-1.
White, S. I., Mutiso, R. M., Vora, P. M., Jahnke, D., Hsu, S., Kikkawa, J. M., … Winey, K. I. (2010). Electrical Percolation Behavior in Silver Nanowire-Polystyrene Composites: Simulation and Experiment. Advanced Functional Materials, 20(16), 2709–2716. doi:10.1002/adfm.201000451.
Charmet, J. (1997). Mécanique du solide et des matériaux. Laboratoire d’Hydrodynamique et M´ecanique Physique.
Irwin, G. R. (1957). Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. Journal of Applied Mechanics, 24(3), 361–364. doi:10.1115/1.4011547.
Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 221(582-593), 163–198. doi:10.1098/rsta.1921.0006.
DOI: 10.28991/CEJ-2022-08-01-09
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 ziane zadri
This work is licensed under a Creative Commons Attribution 4.0 International License.