Thermal Performance of Facades Based on Experimental Monitoring of Outdoor Test Cells in Tropical Climate
Downloads
Doi: 10.28991/cej-2021-03091773
Full Text: PDF
[2] Comisión Nacional de Energía, R.D. Estadísticas energéticas, Información estadística. (2019). Available online: https://www.cne.gob.do/estadisticas-energeticas/ (accessed on December 2021).
[3] Ghosh, A., Norton, B., and Duffy, A. "Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell”. Applied Energy 177 (September 2016), 196–203. doi:10.1016/j.apenergy.2016.05.118.
[4] Cattarin, G., Causone, F., Kindinis, A., and Pagliano, L. "Outdoor test cells for building envelope experimental characterisation–A literature review”. Renewable and Sustainable Energy Reviews 54 (February 2016), 606–625. doi:10.1016/j.rser.2015.10.012.
[5] Strachan, P. A., and Baker, P. H. "Outdoor testing, analysis and modelling of building components”. Building and Environment, 43 (February 2008), 127–128. doi:10.1016/j.buildenv.2006.10.008.
[6] Strachan, P. A., and Vandaele, L. "Case studies of outdoor testing and analysis of building components”. Building and Environment 43 (February 2008), 129–142. doi:10.1016/j.buildenv.2006.10.043.
[7] Baker, P. H. "Evaluation of round-robin testing using the PASLINK test facilities”. Building and Environment 43 (February 2008), 181–188. doi:10.1016/j.buildenv.2006.10.012.
[8] Baker, P. H., and van Dijk, H. A. L. "PASLINK and dynamic outdoor testing of building components”. Building and Environment 43 (February 2008), 143–151. doi:10.1016/j.buildenv.2006.10.009.
[9] Leal, V., and Maldonado, E. "The role of the PASLINK test cell in the modelling and integrated simulation of an innovative window”. Building and Environment 43 (February 2008), 217–227. doi:10.1016/j.buildenv.2006.10.025.
[10] Martín Domínguez, I. R. "Validación experimental del efecto de impermeabilizantes acrílicos celulares sobre el comportamiento térmico de losas para techumbre comparado con otros sistemas comerciales”. PROINSA. Technical Report. Mexico. (2011).
[11] Menoufi, K., Castell, A., Navarro, L., Pérez, G., Boer, D., and Cabeza, L. F. "Evaluation of the environmental impact of experimental cubicles using Life Cycle Assessment: A highlight on the manufacturing phase”. Applied Energy 92 (April 2012), 534–544. doi:10.1016/j.apenergy.2011.11.020.
[12] Arranz Arranz, B. "Optimización de la composición del hueco de fachada en materia de eficiencia energética. Propuesta de indicador como herramienta para el análisis integral del elemento acristalado = Energy performance optimization of window systems. Proposal of an indicator as a tool for an integrated analysis of glazing”. Thesis (Doctoral), E.T.S. Arquitectura. Universidad Politécnica de Madrid. Spain. (2013).
[13] Alcamo, G., and De Lucia, M. "A new test cell for the evaluation of thermo-physical performance of facades building components”. International Journal of Sustainable Energy 33 (April 2013), 954–962. doi:10.1080/14786451.2013.796943.
[14] Alonso Ruiz-Rivas, Carmen. "Rehabilitación energética de fachadas: Propuesta metodológica para la evaluación de soluciones innovadoras, basándose en el diagnóstico de viviendas sociales construidas entre 1940 y 1980”. Thesis (Doctoral), E.T.S.I. Agrónomos. Universidad Politécnica de Madrid. Spain. (2015).
[15] Rojas, J., Barrios, G., Huelsz, G., Tovar, R., and Jalife-Lozano, S. "Thermal performance of two envelope systems: Measurements in non-air-conditioned outdoor test cells and simulations”. Journal of Building Physics 39 (June 2015), 452–460. doi:10.1177/1744259115591993.
[16] Ghosh, A., Norton, B., and Duffy, A. "Behaviour of a SPD switchable glazing in an outdoor test cell with heat removal under varying weather conditions”. Applied Energy 180 (October 2016), 695–706. doi:10.1016/j.apenergy.2016.08.029.
[17] Ghosh, A., Norton, B., and Duffy, A. "Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell”. Applied Energy 177 (September 2016), 196–203. doi:10.1016/j.apenergy.2016.05.118.
[18] Alonso, C., Oteiza, I., García-Navarro, J., and Martín-Consuegra, F. "Energy consumption to cool and heat experimental modules for the energy refurbishment of facades. Three case studies in Madrid”, Energy and Buildings 126 (August 2016), 252-262. doi:10.1016/j.enbuild.2016.04.034.
[19] León-Rodríguez, A. L., Suárez, R., Bustamante, P., Campano, M. A. and Moreno-Rangel, D. "Design and Performance of Test Cells as an Energy Evaluation Model of Facades in a Mediterranean Building Area”. Energies 10 (November 2017), 1816; doi:10.3390/en10111816.
[20] Guerrero-Rubio, J., Sendra, J.J., Fernández-Agüera, J., and Oteiza, I. "Test cell data-based predictive modelling to determine HVAC energy consumption for three façade solutions in Madrid”. Informes de la Construcción, 69 (548) (October-December 2017), e225, doi:10.3989/id.54794.
[21] Goia, F., Schlemminger, C., and Gustavsen, A. "The ZEB Test Cell Laboratory. A facility for characterization of building envelope systems under real outdoor conditions”. Energy Procedia 132 (October 2017), 531–536. doi:10.1016/j.egypro.2017.09.718.
[22] Pagliano, L., Cattarin, G., Causone, F., and Kindinis, A. "Improved methods for the calorimetric determination of the solar factor in outdoor test cell facilities”. Energy and Buildings 153 (October 2017), 513–524. doi:10.1016/j.enbuild.2017.07.028.
[23] Cattarin, G., Pagliano, L., Causone, F., and Kindinis, A. "Empirical and comparative validation of an original model to simulate the thermal behaviour of outdoor test cells”. Energy and Buildings 158 (January 2018), 1711–1723. doi:10.1016/j.enbuild.2017.11.058.
[24] Cattarin, G., Pagliano, L., Causone, F., Kindinis, A., Goia, F., Carlucci, S., and Schlemminger, C. "Empirical validation and local sensitivity analysis of a lumped-parameter thermal model of an outdoor test cell”. Building and Environment 130 (February 2018), 151–161. doi:10.1016/j.buildenv.2017.12.029.
[25] Kokogiannakis, G., Darkwa, J., Badeka, S., and Li, Y. "Experimental comparison of green facades with outdoor test cells during a hot humid season”. Energy&Buildings 185 (February 2019), 196-209. doi:10.1016/j.enbuild.2018.12.038.
[26] Arranz, B., Oteiza, I., Delgado, E., and Gutierrez, A. "Construcción y monitorización del Laboratorio REVen para el estudio del impacto de las ventanas integrando eficiencia energética y calidad ambiental interior”. Informes de la Construcción, 72(557) (February 2020): e324. doi:10.3989/ic.67523.
[27] La Ferla, G., Acha Román, C. A., and Calzada, J. R. "Radiant glass façade technology: Thermal and comfort performance based on experimental monitoring of outdoor test cells”. Building and Environment 182 (September 2020), 107075. doi:10.1016/j.buildenv.2020.107075.
[28] García-Gáfaro, C., Escudero-Revilla, C., Flores-Abascal, I., Erkoreka-González, A., and Martín-Escudero, K. "Dynamical edge effect factor determination for building components thermal characterization under outdoor test conditions in a PASLINK Test Cell: A methodological proposal”. Energy and Buildings 210 (March 2020), 109741. doi:10.1016/j.enbuild.2019.109741.
[29] Gray,W.M., Ruprecht, E. and Phelps, R. "Relative Humidity in Tropical Weather Systems” in Monthly Weather Review Journal 103 (August 1975), 685-690. doi:10.1175/1520-0493(1975)103<0685:RHITWS>2.0.CO;2.
[30] Oficina Nacional de Meteorologia (ONAMET), (2019). Informe del tiempo. Available online: https://onamet.gov.do/m/ (accessed on May 2021).
[31] Grupo Técnico y Ministerio de Turismo de República Dominicana. (2014)
[32] Apple Maps. Apple Inc (2021). Available online: https://www.apple.com/in/maps/ (accessed on November 2021)
[33] Pontificia Universidad Católica Madre y Maestra (PUCMM). Dirección Administrativa (2021), Dominican Republic.
[34] González, Neila, and F. Javier. "Arquitectura bioclimática en un entorno sostenible." Editorial Munilla-Lería. Madrid, Laboratorio 10 (2004): 1-4.
[35] Lawrence Berkeley National Laboratory (LBNL). Available online: https://windows.lbl.gov/software/therm. (accessed on November 2020)
[36] UNE EN ISO 8990. "Determinación de las propiedades de transmisión térmica en régimen estacionario. Métodos de la caja caliente guardada y calibrada”. AENOR. 2ª Edición. (1997).
[37] ISO, NORMA UNE-EN. "7726 Ergonomía de los ambientes térmicos." Instrumentos de medida de las magnitudes físicas (2002).
[38] Davis Instruments. Available online: https://www.davisinstruments.com/solution/vantage-pro2/ (accessed on October 2019).
[39] Lawrence Berkeley National Laboratory (LBNL). Available online: https://windows.lbl.gov/software/window (accessed on November 2020).
[40] Izzo, M., Rosskopf, C.M., Aucelli, P., Maratea, A., Méndez, R., Pérez, C. and Segura, H. "A new climatic map of the Dominican Republic based on the Thornthwaite classification”, Physical Geography 31, (2010), 455-472. doi.org/10.2747/0272-3646.31.5.455.
[41] Souza, L.C.O., Souza, H.A., and Rodrigues, E.F. "Experimental and numerical analysis of a naturally ventilated double-skin façade”. Energy and Buildings 165 (April 2018), 328–339. doi:10.1016/j.enbuild.2018.01.048.
- Authors retain all copyrights. It is noticeable that authors will not be forced to sign any copyright transfer agreements.
- This work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.