Thermal Performance of Facades Based on Experimental Monitoring of Outdoor Test Cells in Tropical Climate

Letzai Ruiz-Valero, Juan Faxas-Guzmán, Julio Ferreira, Victor González, Néstor Guerrero, Francisco Ramirez


The high cost of energy consumption in buildings highlights the importance of research focused on improving the energy efficiency of building’s envelope systems. It is important to characterize the real behavior of these systems to know the effectiveness in terms of energy reduction. Therefore, the aim of this paper is to characterize the thermal performance of facades based on experimental monitoring of outdoor test cells in tropical climate. To carry out this research, a case study was presented to compare two construction systems. One of them is a light façade (M1) and the other a reference façade (M2). A thermal simulation was performed for the opaque and glazed facades. In addition, several parameters were measured with different types of sensors, as well as environmental variables to evaluate the thermal and lighting behavior of multiple facades systems under real conditions. The findings show that light façade behavior was the opposite of what was expected, since by incorporating a window in the façade it has allowed solar radiation to increase the interior temperature in both modules. In the case of the light facade the penalization was higher than the reference facade, which has a lower thermal transmittance than M1.


Doi: 10.28991/cej-2021-03091773

Full Text: PDF


Outdoor Test Cells; Building Envelope Systems; Façade Systems; Thermal Behavior; Tropical Climate; Dominican Republic.


International Energy Agency. “Key world energy statistics”. (2011). Available online: (accessed on 12 April 2021).

Comisión Nacional de Energía, R.D. Estadísticas energéticas, Información estadística. (2019). Available online: (accessed on December 2021).

Ghosh, A., Norton, B., and Duffy, A. “Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell”. Applied Energy 177 (September 2016), 196–203. doi:10.1016/j.apenergy.2016.05.118.

Cattarin, G., Causone, F., Kindinis, A., and Pagliano, L. “Outdoor test cells for building envelope experimental characterisation–A literature review”. Renewable and Sustainable Energy Reviews 54 (February 2016), 606–625. doi:10.1016/j.rser.2015.10.012.

Strachan, P. A., and Baker, P. H. “Outdoor testing, analysis and modelling of building components”. Building and Environment, 43 (February 2008), 127–128. doi:10.1016/j.buildenv.2006.10.008.

Strachan, P. A., and Vandaele, L. “Case studies of outdoor testing and analysis of building components”. Building and Environment 43 (February 2008), 129–142. doi:10.1016/j.buildenv.2006.10.043.

Baker, P. H. “Evaluation of round-robin testing using the PASLINK test facilities”. Building and Environment 43 (February 2008), 181–188. doi:10.1016/j.buildenv.2006.10.012.

Baker, P. H., and van Dijk, H. A. L. “PASLINK and dynamic outdoor testing of building components”. Building and Environment 43 (February 2008), 143–151. doi:10.1016/j.buildenv.2006.10.009.

Leal, V., and Maldonado, E. “The role of the PASLINK test cell in the modelling and integrated simulation of an innovative window”. Building and Environment 43 (February 2008), 217–227. doi:10.1016/j.buildenv.2006.10.025.

Martín Domínguez, I. R. “Validación experimental del efecto de impermeabilizantes acrílicos celulares sobre el comportamiento térmico de losas para techumbre comparado con otros sistemas comerciales”. PROINSA. Technical Report. Mexico. (2011).

Menoufi, K., Castell, A., Navarro, L., Pérez, G., Boer, D., and Cabeza, L. F. “Evaluation of the environmental impact of experimental cubicles using Life Cycle Assessment: A highlight on the manufacturing phase”. Applied Energy 92 (April 2012), 534–544. doi:10.1016/j.apenergy.2011.11.020.

Arranz Arranz, B. “Optimización de la composición del hueco de fachada en materia de eficiencia energética. Propuesta de indicador como herramienta para el análisis integral del elemento acristalado = Energy performance optimization of window systems. Proposal of an indicator as a tool for an integrated analysis of glazing”. Thesis (Doctoral), E.T.S. Arquitectura. Universidad Politécnica de Madrid. Spain. (2013).

Alcamo, G., and De Lucia, M. “A new test cell for the evaluation of thermo-physical performance of facades building components”. International Journal of Sustainable Energy 33 (April 2013), 954–962. doi:10.1080/14786451.2013.796943.

Alonso Ruiz-Rivas, Carmen. “Rehabilitación energética de fachadas: Propuesta metodológica para la evaluación de soluciones innovadoras, basándose en el diagnóstico de viviendas sociales construidas entre 1940 y 1980”. Thesis (Doctoral), E.T.S.I. Agrónomos. Universidad Politécnica de Madrid. Spain. (2015).

Rojas, J., Barrios, G., Huelsz, G., Tovar, R., and Jalife-Lozano, S. “Thermal performance of two envelope systems: Measurements in non-air-conditioned outdoor test cells and simulations”. Journal of Building Physics 39 (June 2015), 452–460. doi:10.1177/1744259115591993.

Ghosh, A., Norton, B., and Duffy, A. “Behaviour of a SPD switchable glazing in an outdoor test cell with heat removal under varying weather conditions”. Applied Energy 180 (October 2016), 695–706. doi:10.1016/j.apenergy.2016.08.029.

Ghosh, A., Norton, B., and Duffy, A. “Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell”. Applied Energy 177 (September 2016), 196–203. doi:10.1016/j.apenergy.2016.05.118.

Alonso, C., Oteiza, I., García-Navarro, J., and Martín-Consuegra, F. “Energy consumption to cool and heat experimental modules for the energy refurbishment of facades. Three case studies in Madrid”, Energy and Buildings 126 (August 2016), 252-262. doi:10.1016/j.enbuild.2016.04.034.

León-Rodríguez, A. L., Suárez, R., Bustamante, P., Campano, M. A. and Moreno-Rangel, D. “Design and Performance of Test Cells as an Energy Evaluation Model of Facades in a Mediterranean Building Area”. Energies 10 (November 2017), 1816; doi:10.3390/en10111816.

Guerrero-Rubio, J., Sendra, J.J., Fernández-Agüera, J., and Oteiza, I. “Test cell data-based predictive modelling to determine HVAC energy consumption for three façade solutions in Madrid”. Informes de la Construcción, 69 (548) (October-December 2017), e225, doi:10.3989/id.54794.

Goia, F., Schlemminger, C., and Gustavsen, A. “The ZEB Test Cell Laboratory. A facility for characterization of building envelope systems under real outdoor conditions”. Energy Procedia 132 (October 2017), 531–536. doi:10.1016/j.egypro.2017.09.718.

Pagliano, L., Cattarin, G., Causone, F., and Kindinis, A. “Improved methods for the calorimetric determination of the solar factor in outdoor test cell facilities”. Energy and Buildings 153 (October 2017), 513–524. doi:10.1016/j.enbuild.2017.07.028.

Cattarin, G., Pagliano, L., Causone, F., and Kindinis, A. “Empirical and comparative validation of an original model to simulate the thermal behaviour of outdoor test cells”. Energy and Buildings 158 (January 2018), 1711–1723. doi:10.1016/j.enbuild.2017.11.058.

Cattarin, G., Pagliano, L., Causone, F., Kindinis, A., Goia, F., Carlucci, S., and Schlemminger, C. “Empirical validation and local sensitivity analysis of a lumped-parameter thermal model of an outdoor test cell”. Building and Environment 130 (February 2018), 151–161. doi:10.1016/j.buildenv.2017.12.029.

Kokogiannakis, G., Darkwa, J., Badeka, S., and Li, Y. “Experimental comparison of green facades with outdoor test cells during a hot humid season”. Energy&Buildings 185 (February 2019), 196-209. doi:10.1016/j.enbuild.2018.12.038.

Arranz, B., Oteiza, I., Delgado, E., and Gutierrez, A. “Construcción y monitorización del Laboratorio REVen para el estudio del impacto de las ventanas integrando eficiencia energética y calidad ambiental interior”. Informes de la Construcción, 72(557) (February 2020): e324. doi:10.3989/ic.67523.

La Ferla, G., Acha Román, C. A., and Calzada, J. R. “Radiant glass façade technology: Thermal and comfort performance based on experimental monitoring of outdoor test cells”. Building and Environment 182 (September 2020), 107075. doi:10.1016/j.buildenv.2020.107075.

García-Gáfaro, C., Escudero-Revilla, C., Flores-Abascal, I., Erkoreka-González, A., and Martín-Escudero, K. “Dynamical edge effect factor determination for building components thermal characterization under outdoor test conditions in a PASLINK Test Cell: A methodological proposal”. Energy and Buildings 210 (March 2020), 109741. doi:10.1016/j.enbuild.2019.109741.

Gray,W.M., Ruprecht, E. and Phelps, R. “Relative Humidity in Tropical Weather Systems” in Monthly Weather Review Journal 103 (August 1975), 685-690. doi:10.1175/1520-0493(1975)103<0685:RHITWS>2.0.CO;2.

Oficina Nacional de Meteorologia (ONAMET), (2019). Informe del tiempo. Available online: (accessed on May 2021).

Grupo Técnico y Ministerio de Turismo de República Dominicana. (2014)

Apple Maps. Apple Inc (2021). Available online: (accessed on November 2021)

Pontificia Universidad Católica Madre y Maestra (PUCMM). Dirección Administrativa (2021), Dominican Republic.

González, Neila, and F. Javier. "Arquitectura bioclimática en un entorno sostenible." Editorial Munilla-Lería. Madrid, Laboratorio 10 (2004): 1-4.

Lawrence Berkeley National Laboratory (LBNL). Available online: (accessed on November 2020)

UNE EN ISO 8990. “Determinación de las propiedades de transmisión térmica en régimen estacionario. Métodos de la caja caliente guardada y calibrada”. AENOR. 2ª Edición. (1997).

ISO, NORMA UNE-EN. "7726 Ergonomía de los ambientes térmicos." Instrumentos de medida de las magnitudes físicas (2002).

Davis Instruments. Available online: (accessed on October 2019).

Lawrence Berkeley National Laboratory (LBNL). Available online: (accessed on November 2020).

Izzo, M., Rosskopf, C.M., Aucelli, P., Maratea, A., Méndez, R., Pérez, C. and Segura, H. “A new climatic map of the Dominican Republic based on the Thornthwaite classification”, Physical Geography 31, (2010), 455-472.

Souza, L.C.O., Souza, H.A., and Rodrigues, E.F. “Experimental and numerical analysis of a naturally ventilated double-skin façade”. Energy and Buildings 165 (April 2018), 328–339. doi:10.1016/j.enbuild.2018.01.048.

Full Text: PDF

DOI: 10.28991/cej-2021-03091773


  • There are currently no refbacks.

Copyright (c) 2021 Letzai Ruiz-Valero, Juan Faxas-Guzmán, Julio Ferreira, Victor González, Néstor Guerrero, Francisco Ramirez

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.