Exact Three-Dimensional Stability Analysis of Plate Using a Direct Variational Energy Method
Abstract
Doi: 10.28991/CEJ-2022-08-01-05
Full Text: PDF
Keywords
References
Reddy, J. N. (2006). Classical Theory of Plates. In Theory and Analysis of Elastic Plates and Shells, CRC Press. doi:10.1201/9780849384165-7.
Onyeka, F. C., & Okeke, T. E. (2021). Analysis of critical imposed load of plate using variational calculus. Journal of Advances in Science and Engineering, 4(1), 13–23. doi:10.37121/jase.v4i1.125.
Festus, O., Okeke, E. T., & John, W. (2020). Strain–Displacement expressions and their effect on the deflection and strength of plate. Advances in Science, Technology and Engineering Systems, 5(5), 401–413. doi:10.25046/AJ050551.
Shufrin, I., & Eisenberger, M. (2005). Stability and vibration of shear deformable plates - First order and higher order analyses. International Journal of Solids and Structures, 42(3–4), 1225–1251. doi:10.1016/j.ijsolstr.2004.06.067.
Timoshenko, S. P., Gere, J. M., & Prager, W. (1962). Theory of Elastic Stability, Second Edition. In Journal of Applied Mechanics (2nd ed., Vol. 29, Issue 1). McGraw-Hill Books Company. doi:10.1115/1.3636481.
Onyeka, F. C. (2020). Critical Lateral Load Analysis of Rectangular Plate Considering Shear Deformation Effect. Global Journal of Civil Engineering, 1, 16–27. doi:10.37516/global.j.civ.eng.2020.0121.
Kirchhoff, G. (1850). 4. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal Fur Die Reine Und Angewandte Mathematik, 1850(40), 51–88. doi:10.1515/crll.1850.40.51.
Zenkour, A. M. (2003). Exact mixed-classical solutions for the bending analysis of shear deformable rectangular plates. Applied Mathematical Modelling, 27(7), 515–534. doi:10.1016/S0307-904X(03)00046-5.
Reissner, E. (1944). On the Theory of Bending of Elastic Plates. Journal of Mathematics and Physics, 23(1–4), 184–191. doi:10.1002/sapm1944231184.
Reissner, E. (1945). The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. Journal of Applied Mechanics, 12(2), A69–A77. doi:10.1115/1.4009435.
Mindlin, R. D. (1951). Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates. Journal of Applied Mechanics, 18(1), 31–38. doi:10.1115/1.4010217.
Sadrnejad, S. A., Daryan, A. S., & Ziaei, M. (2009). Vibration equations of thick rectangular plates using mindlin plate theory. Journal of Computer Science, 5(11), 838–842. doi:10.3844/jcssp.2009.838.842.
Ghugal, Y. M., & Sayyad, A. S. (2011). Free vibration of thick orthotropic plates using trigonometric shear deformation theory. Latin American Journal of Solids and Structures, 8(3), 229–243. doi:10.1590/S1679-78252011000300002.
Shufrin, I., & Eisenberger, M. (2005). Stability and vibration of shear deformable plates - First order and higher order analyses. International Journal of Solids and Structures, 42(3–4), 1225–1251. doi:10.1016/j.ijsolstr.2004.06.067.
Reissner, E. (1979). Note on the effect of transverse shear deformation in laminated anisotropic plates. Computer Methods in Applied Mechanics and Engineering, 20(2), 203–209. doi:10.1016/0045-7825(79)90018-5.
Owus M, I. (2016). Use of Polynomial Shape Function in Shear Deformation Theory for Thick Plate Analysis. IOSR Journal of Engineering, 06(06), 08–20. doi:10.9790/3021-066010820.
Festus, O., & Okeke, E. T. (2021). Analytical Solution of Thick Rectangular Plate with Clamped and Free Support Boundary Condition using Polynomial Shear Deformation Theory. Advances in Science, Technology and Engineering Systems Journal, 6(1), 1427–1439. doi:10.25046/aj0601162.
Senjanović, I., Tomić, M., Vladimir, N., & Cho, D. S. (2013). Analytical solution for free vibrations of a moderately thick rectangular plate. Mathematical Problems in Engineering, 2013(3), 1–13. doi:10.1155/2013/207460.
Reddy, J. N., & Phan, N. D. (1985). Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory. Journal of Sound and Vibration, 98(2), 157–170. doi:10.1016/0022-460X(85)90383-9.
Sayyad, A. S., & Ghugal, Y. M. (2014). Buckling and free vibration analysis of orthotropic plates by using exponential shear deformation theory. Latin American Journal of Solids and Structures, 11(8), 1298–1314. doi:10.1590/S1679-78252014000800001.
Sayyad, A. S., & Ghugal, Y. M. (2013). Buckling analysis of thick isotropic plates by using exponential shear deformation theory. Applied and Computational Mechanics, 6, 185–196.
Gunjal, S. M., Hajare, R. B., Sayyad, A. S., & Ghodle, M. D. (2015). Buckling analysis of thick plates using refined trigonometric shear deformation theory. Journal of Materials and Engineering Structures, 2, 159–167.
Ibearugbulem, O. M., Ebirim, S. I., Anya, U. C., & Ettu, L. O. (2020). Application of alternative II theory to vibration and stability analysis of thick rectangular plates (Isotropic and orthotropic). Nigerian Journal of Technology, 39(1), 52–62. doi:10.4314/njt.v39i1.6.
Ezeh, J. C., Onyechere, I. C., Ibearugbulem, O. M., Anya, U. C., & Anyaogu, L. (2018). Buckling Analysis of Thick Rectangular Flat SSSS Plates using Polynomial Displacement Functions. International Journal of Scientific and Engineering Research, 9(9), 387–392.
Higdon, R. A., & Holl, D. L. (1937). Stresses in moderately thick rectangular plates. In Duke Mathematical Journal (Vol. 3, Issue 1). Iowa State University. doi:10.1215/S0012-7094-37-00303-X.
Pagano, N. J. (1970). Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates. Journal of Composite Materials, 4(1), 20–34. doi:10.1177/002199837000400102.
Uymaz, B., & Aydogdu, M. (2013). Three dimensional shear buckling of FG plates with various boundary conditions. Composite Structures, 96, 670–682. doi:10.1016/j.compstruct.2012.08.031.
Singh, D. B., & Singh, B. N. (2016). Buckling analysis of three dimensional braided composite plates under uniaxial loading using Inverse Hyperbolic Shear Deformation Theory. Composite Structures, 157, 360–365. doi:10.1016/j.compstruct.2016.08.029.
Lee, C. W. (1967). A three-dimensional solution for simply supported thick rectangular plates. Nuclear Engineering and Design, 6(2), 155–162. doi:10.1016/0029-5493(67)90126-4.
Moslemi, A., Navayi Neya, B., & Vaseghi Amiri, J. (2016). 3-D elasticity buckling solution for simply supported thick rectangular plates using displacement potential functions. Applied Mathematical Modelling, 40(11–12), 5717–5730. doi:10.1016/j.apm.2015.12.034.
DOI: 10.28991/CEJ-2022-08-01-05
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Festus CHUKWUDI Onyeka

This work is licensed under a Creative Commons Attribution 4.0 International License.