Exact Three-Dimensional Stability Analysis of Plate Using a Direct Variational Energy Method

F. C. Onyeka, B. O. Mama, T. E. Okeke

Abstract


In this paper, direct variational calculus was put into practical use to analyses the three dimensional (3D) stability of rectangular thick plate which was simply supported at all the four edges (SSSS) under uniformly distributed compressive load. In the analysis, both trigonometric and polynomial displacement functions were used. This was done by formulating the equation of total potential energy for a thick plate using the 3D constitutive relations, from then on, the equation of compatibility was obtained to determine the relationship between the rotations and deflection. In the same way, governing equation was obtained through minimization of the total potential energy functional with respect to deflection. The solution of the governing equation is the function for deflection. Functions for rotations were obtained from deflection function using the solution of compatibility equations. These functions, deflection and rotations were substituted back into the energy functional, from where, through minimizations with respect to displacement coefficients, formulas for analysis were obtained. In the result, the critical buckling loads from the present study are higher than those of refined plate theories with 7.70%, signifying the coarseness of the refined plate theories. This amount of difference cannot be overlooked. However, it is shown that, all the recorded average percentage differences between trigonometric and polynomial approaches used in this work and those of 3D exact elasticity theory is lower than 1.0%, confirming the exactness of the present theory. Thus, the exact 3D plate theory obtained, provides a good solution for the stability analysis of plate and, can be recommended for analysis of any type of rectangular plates under the same loading and boundary condition.

 

Doi: 10.28991/CEJ-2022-08-01-05

Full Text: PDF


Keywords


Exact Solution; Direct Variational Method; Compatibility Governing Equation; Critical Buckling Load; Stability Analysis; Trigonometric; Polynomial Displacement Functions.

References


Reddy, J. N. (2006). Classical Theory of Plates. In Theory and Analysis of Elastic Plates and Shells, CRC Press. doi:10.1201/9780849384165-7.

Onyeka, F. C., & Okeke, T. E. (2021). Analysis of critical imposed load of plate using variational calculus. Journal of Advances in Science and Engineering, 4(1), 13–23. doi:10.37121/jase.v4i1.125.

Festus, O., Okeke, E. T., & John, W. (2020). Strain–Displacement expressions and their effect on the deflection and strength of plate. Advances in Science, Technology and Engineering Systems, 5(5), 401–413. doi:10.25046/AJ050551.

Shufrin, I., & Eisenberger, M. (2005). Stability and vibration of shear deformable plates - First order and higher order analyses. International Journal of Solids and Structures, 42(3–4), 1225–1251. doi:10.1016/j.ijsolstr.2004.06.067.

Timoshenko, S. P., Gere, J. M., & Prager, W. (1962). Theory of Elastic Stability, Second Edition. In Journal of Applied Mechanics (2nd ed., Vol. 29, Issue 1). McGraw-Hill Books Company. doi:10.1115/1.3636481.

Onyeka, F. C. (2020). Critical Lateral Load Analysis of Rectangular Plate Considering Shear Deformation Effect. Global Journal of Civil Engineering, 1, 16–27. doi:10.37516/global.j.civ.eng.2020.0121.

Kirchhoff, G. (1850). 4. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal Fur Die Reine Und Angewandte Mathematik, 1850(40), 51–88. doi:10.1515/crll.1850.40.51.

Zenkour, A. M. (2003). Exact mixed-classical solutions for the bending analysis of shear deformable rectangular plates. Applied Mathematical Modelling, 27(7), 515–534. doi:10.1016/S0307-904X(03)00046-5.

Reissner, E. (1944). On the Theory of Bending of Elastic Plates. Journal of Mathematics and Physics, 23(1–4), 184–191. doi:10.1002/sapm1944231184.

Reissner, E. (1945). The Effect of Transverse Shear Deformation on the Bending of Elastic Plates. Journal of Applied Mechanics, 12(2), A69–A77. doi:10.1115/1.4009435.

Mindlin, R. D. (1951). Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates. Journal of Applied Mechanics, 18(1), 31–38. doi:10.1115/1.4010217.

Sadrnejad, S. A., Daryan, A. S., & Ziaei, M. (2009). Vibration equations of thick rectangular plates using mindlin plate theory. Journal of Computer Science, 5(11), 838–842. doi:10.3844/jcssp.2009.838.842.

Ghugal, Y. M., & Sayyad, A. S. (2011). Free vibration of thick orthotropic plates using trigonometric shear deformation theory. Latin American Journal of Solids and Structures, 8(3), 229–243. doi:10.1590/S1679-78252011000300002.

Shufrin, I., & Eisenberger, M. (2005). Stability and vibration of shear deformable plates - First order and higher order analyses. International Journal of Solids and Structures, 42(3–4), 1225–1251. doi:10.1016/j.ijsolstr.2004.06.067.

Reissner, E. (1979). Note on the effect of transverse shear deformation in laminated anisotropic plates. Computer Methods in Applied Mechanics and Engineering, 20(2), 203–209. doi:10.1016/0045-7825(79)90018-5.

Owus M, I. (2016). Use of Polynomial Shape Function in Shear Deformation Theory for Thick Plate Analysis. IOSR Journal of Engineering, 06(06), 08–20. doi:10.9790/3021-066010820.

Festus, O., & Okeke, E. T. (2021). Analytical Solution of Thick Rectangular Plate with Clamped and Free Support Boundary Condition using Polynomial Shear Deformation Theory. Advances in Science, Technology and Engineering Systems Journal, 6(1), 1427–1439. doi:10.25046/aj0601162.

Senjanović, I., Tomić, M., Vladimir, N., & Cho, D. S. (2013). Analytical solution for free vibrations of a moderately thick rectangular plate. Mathematical Problems in Engineering, 2013(3), 1–13. doi:10.1155/2013/207460.

Reddy, J. N., & Phan, N. D. (1985). Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory. Journal of Sound and Vibration, 98(2), 157–170. doi:10.1016/0022-460X(85)90383-9.

Sayyad, A. S., & Ghugal, Y. M. (2014). Buckling and free vibration analysis of orthotropic plates by using exponential shear deformation theory. Latin American Journal of Solids and Structures, 11(8), 1298–1314. doi:10.1590/S1679-78252014000800001.

Sayyad, A. S., & Ghugal, Y. M. (2013). Buckling analysis of thick isotropic plates by using exponential shear deformation theory. Applied and Computational Mechanics, 6, 185–196.

Gunjal, S. M., Hajare, R. B., Sayyad, A. S., & Ghodle, M. D. (2015). Buckling analysis of thick plates using refined trigonometric shear deformation theory. Journal of Materials and Engineering Structures, 2, 159–167.

Ibearugbulem, O. M., Ebirim, S. I., Anya, U. C., & Ettu, L. O. (2020). Application of alternative II theory to vibration and stability analysis of thick rectangular plates (Isotropic and orthotropic). Nigerian Journal of Technology, 39(1), 52–62. doi:10.4314/njt.v39i1.6.

Ezeh, J. C., Onyechere, I. C., Ibearugbulem, O. M., Anya, U. C., & Anyaogu, L. (2018). Buckling Analysis of Thick Rectangular Flat SSSS Plates using Polynomial Displacement Functions. International Journal of Scientific and Engineering Research, 9(9), 387–392.

Higdon, R. A., & Holl, D. L. (1937). Stresses in moderately thick rectangular plates. In Duke Mathematical Journal (Vol. 3, Issue 1). Iowa State University. doi:10.1215/S0012-7094-37-00303-X.

Pagano, N. J. (1970). Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates. Journal of Composite Materials, 4(1), 20–34. doi:10.1177/002199837000400102.

Uymaz, B., & Aydogdu, M. (2013). Three dimensional shear buckling of FG plates with various boundary conditions. Composite Structures, 96, 670–682. doi:10.1016/j.compstruct.2012.08.031.

Singh, D. B., & Singh, B. N. (2016). Buckling analysis of three dimensional braided composite plates under uniaxial loading using Inverse Hyperbolic Shear Deformation Theory. Composite Structures, 157, 360–365. doi:10.1016/j.compstruct.2016.08.029.

Lee, C. W. (1967). A three-dimensional solution for simply supported thick rectangular plates. Nuclear Engineering and Design, 6(2), 155–162. doi:10.1016/0029-5493(67)90126-4.

Moslemi, A., Navayi Neya, B., & Vaseghi Amiri, J. (2016). 3-D elasticity buckling solution for simply supported thick rectangular plates using displacement potential functions. Applied Mathematical Modelling, 40(11–12), 5717–5730. doi:10.1016/j.apm.2015.12.034.


Full Text: PDF

DOI: 10.28991/CEJ-2022-08-01-05

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 Festus CHUKWUDI Onyeka

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
x
Message