Engineering Properties of Concrete Made with Coal Bottom Ash as Sustainable Construction Materials

Fanny Monika, Hakas Prayuda, Martyana Dwi Cahyati, Erwiena Nurmala Augustin, Hilal Aulia Rahman, Agustin Dwi Prasintasari


Concrete is considered one of the construction materials that contribute the most significant carbon dioxide in the world. Meanwhile, according to various studies, concrete production will continue to rise through 2050, especially in developing countries. According to several reports, cement manufacture is one of the largest sources of carbon dioxide in the concrete sector. In addition, overexploitation of aggregates due to concrete production also causes unavoidable natural damage. Bottom ash waste was used as a replacement for cement and fine aggregate as sustainable construction materials. It is envisaged that this research would allow industrial waste to be utilized to its full potential, resulting in a concrete that is more environmentally friendly and minimizes carbon dioxide emissions during the manufacturing process. This study is divided into bottom ash as a cement substitute and bottom ash as a fine aggregate substitute. The engineering properties of the concrete were checked during the experiments in this study when it was fresh and hardened states. The slump test is used to determine the workability of fresh concrete. While for the hardened properties tests consist of compressive strength, splitting tensile strength, flexural strength, and mass density. The usage of bottom ash as a cement replacement demonstrates that as the composition of bottom ash increases, the performance of the hardened properties of concrete decreases. While using bottom ash as a fine aggregate replacement reveals that the performance of hardened properties has improved as the proportion of bottom ash utilized has increased.


Doi: 10.28991/CEJ-2022-08-01-014

Full Text: PDF


Bottom Ash; Cementitious Materials; Fresh Properties; Hardened Properties; Sustainable Material.


Liu, C., Ahn, C. R., An, X., & Lee, S. (2013). Life-Cycle Assessment of Concrete Dam Construction: Comparison of Environmental Impact of Rock-Filled and Conventional Concrete. Journal of Construction Engineering and Management, 139(12), 1–11. doi:10.1061/(asce)co.1943-7862.0000752.

Wesseling, J. H., & Van der Vooren, A. (2017). Lock-in of mature innovation systems: the transformation toward clean concrete in the Netherlands. Journal of Cleaner Production, 155, 114–124. doi:10.1016/j.jclepro.2016.08.115.

Aamar Danish, M. Usama Salim, T. A. (2019). Trends and developments in green cement “A sustainable approach.” Sustainable Structure and Materials, 2(1), 45–60. doi:10.26392/SSM.2019.02.01.045.

Imbabi, M. S., Carrigan, C., & McKenna, S. (2012). Trends and developments in green cement and concrete technology. International Journal of Sustainable Built Environment, 1(2), 194–216. doi:10.1016/j.ijsbe.2013.05.001.

Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production-present and future. Cement and Concrete Research, 41(7), 642–650. doi:10.1016/j.cemconres.2011.03.019.

Li, N., Ma, D., & Chen, W. (2015). Projection of Cement Demand and Analysis of the Impacts of Carbon Tax on Cement Industry in China. Energy Procedia, 75, 1766–1771. doi:10.1016/j.egypro.2015.07.457.

Andrew, R. M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10(1), 195–217. doi:10.5194/essd-10-195-2018.

Salem Al-Ahdal, B. M., Xiong, L. B., & Tufail, R. F. (2018). Mechanical properties of concrete containing Fly Ash, Rice Husk Ash and Waste Glass Powder. Civil Engineering Journal, 4(5), 1019. doi:10.28991/cej-0309153.

Sadr Momtazi, A., Tahmouresi, B., & Kohani Khoshkbijari, R. (2016). An Investigation on Mechanical Properties and Durability of Concrete Containing Silica Fume and Fly Ash. Civil Engineering Journal, 2(5), 189–196. doi:10.28991/cej-2016-00000025.

Bazzar, K., Hafiane, F. Z., & Alaoui, A. H. (2021). The early age strength improvement of the high volume fly ash mortar. Civil Engineering Journal (Iran), 7(8), 1378–1388. doi:10.28991/cej-2021-03091731.

Hammat, S., Menadi, B., Kenai, S., Khatib, J., & Kadri, E. H. (2021). Properties of self-compacting mortar containing slag with different finenesses. Civil Engineering Journal (Iran), 7(5), 840–846. doi:10.28991/cej-2021-03091694.

Kumar, G., & Mishra, S. S. (2021). Effect of ggbfs on workability and strength of alkali-activated geopolymer concrete. Civil Engineering Journal (Iran), 7(6), 1036–1049. doi:10.28991/cej-2021-03091708.

Phul, A. A., Memon, M. J., Shah, S. N. R., & Sandhu, A. R. (2019). GGBS and Fly Ash Effects on Compressive Strength by Partial Replacement of Cement Concrete. Civil Engineering Journal, 5(4), 913–921. doi:10.28991/cej-2019-03091299.

Prayuda, H., Monika, F., & Cahyati, M. D. (2020). Fresh properties and compressive strength of self-compacting concrete with fines aggregate replacement using red brick powder and rice husk ash. World Journal of Engineering, 17(4), 473–480. doi:10.1108/WJE-08-2019-0236.

Prayuda, H., Cahyati, M. D., & Monika, F. (2020). Fresh properties characteristics and compressive strength of fiber self-compacting concrete incorporated with rice husk ash and wire steel fiber. International Journal of Sustainable Construction Engineering and Technology, 11(1), 290–299. doi:10.30880/ijscet.2020.11.01.028.

Bheel, N., Meghwar, S. L., Abbasi, S. A., Marwari, L. C., Mugeri, J. A., & Abbasi, R. A. (2018). Effect of Rice Husk Ash and Water-Cement Ratio on Strength of Concrete. Civil Engineering Journal, 4(10), 2373. doi:10.28991/cej-03091166.

Amin, N. (2011). Use of Bagasse Ash in Concrete and Its Impact on the Strength and Chloride Resistivity. Journal of Materials in Civil Engineering, 23(5), 717–720. doi:10.1061/(asce)mt.1943-5533.0000227.

Mangi, S. A., Jamaluddin, N., Wan Ibrahim, M. H., Abdullah, A. H., Abdul Awal, A. S. M., Sohu, S., & Ali, N. (2017). Utilization of sugarcane bagasse ash in concrete as partial replacement of cement. IOP Conference Series: Materials Science and Engineering, 271(1), 1–9. doi:10.1088/1757-899X/271/1/012001.

Bahurudeen, A., Kanraj, D., Gokul Dev, V., & Santhanam, M. (2015). Performance evaluation of sugarcane bagasse ash blended cement in concrete. Cement and Concrete Composites, 59, 77–88. doi:10.1016/j.cemconcomp.2015.03.004.

Prayuda, H., Saleh, F., Maulana, T. I., & Monika, F. (2018). Fresh and mechanical properties of self-compacting concrete with coarse aggregate replacement using Waste of Oil Palm Shell. IOP Conference Series: Materials Science and Engineering, 352(1), 1–6. doi:10.1088/1757-899X/352/1/012028.

Sata, V., Jaturapitakkul, C., & Kiattikomol, K. (2004). Utilization of Palm Oil Fuel Ash in High-Strength Concrete. Journal of Materials in Civil Engineering, 16(6), 623–628. doi:10.1061/(asce)0899-1561(2004)16:6(623).

Hamada, H. M., Jokhio, G. A., Yahaya, F. M., Humada, A. M., & Gul, Y. (2018). The present state of the use of palm oil fuel ash (POFA) in concrete. Construction and Building Materials, 175, 26–40. doi:10.1016/j.conbuildmat.2018.03.227.

Prayuda, H., Zega, B. C., Monika, F., Saleh, F., & Cahyati, M. D. (2020). Fresh and Mechanical Characteristics of Self-Compacting Polypropylene Fiber Concrete Incorporated With Kaolin. Sinergi, 24(3), 223. doi:10.22441/sinergi.2020.3.007.

Du, H., & Pang, S. D. (2020). High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Construction and Building Materials, 264, 1–9. doi:10.1016/j.conbuildmat.2020.120152.

Abbas, R., Khereby, M. A., Ghorab, H. Y., & Elkhoshkhany, N. (2020). Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Technologies and Environmental Policy, 22(3), 669–687. doi:10.1007/s10098-020-01811-4.

Dan Gavriletea, M. (2017). Environmental impacts of sand exploitation. Analysis of sand market. Sustainability (Switzerland), 9(7), 1–26. doi:10.3390/su9071118.

Mistri, A., Dhami, N., Bhattacharyya, S. K., Barai, S. V., Mukherjee, A., & Biswas, W. K. (2021). Environmental implications of the use of bio-cement treated recycled aggregate in concrete. Resources, Conservation and Recycling, 167, 1–13. doi:10.1016/j.resconrec.2021.105436.

Zhang, Q., Feng, X., Chen, X., & Lu, K. (2020). Mix design for recycled aggregate pervious concrete based on response surface methodology. Construction and Building Materials, 259, 1–11. doi:10.1016/j.conbuildmat.2020.119776.

Zhu, H., Wen, C., Wang, Z., & Li, L. (2020). Study on the permeability of recycled aggregate pervious concrete with fibers. Materials, 13(2), 1–18. doi:10.3390/ma13020321.

Darvish, P., Johnson Alengaram, U., Soon Poh, Y., Ibrahim, S., & Yusoff, S. (2020). Performance evaluation of palm oil clinker sand as replacement for conventional sand in geopolymer mortar. Construction and Building Materials, 258, 1–14. doi:10.1016/j.conbuildmat.2020.120352.

Muthusamy, K., Jamaludin, N. F. A., Kamaruzzaman, M. N., Ahmad, M. Z., Zamri, N. A., & Albshir Budiea, A. M. (2020). Compressive strength of palm oil clinker lightweight aggregate concrete containing coal bottom ash as sand replacement. Materials Today: Proceedings, 46, 1724–1728. doi:10.1016/j.matpr.2020.07.527.

Alrshoudi, F., Mohammadhosseini, H., Tahir, M. M., Alyousef, R., Alghamdi, H., Alharbi, Y. R., & Alsaif, A. (2020). Sustainable use of waste polypropylene fibers and palm oil fuel ash in the production of novel prepacked aggregate fiber-reinforced concrete. Sustainability (Switzerland), 12(12), 1–14. doi:10.3390/SU12124871.

Hamza Hasnain, M., Javed, U., Ali, A., & Saeed Zafar, M. (2021). Eco-friendly utilization of rice husk ash and bagasse ash blend as partial sand replacement in self-compacting concrete. Construction and Building Materials, 273, 1–14. doi:10.1016/j.conbuildmat.2020.121753.

Chetan, D., & Aravindan, A. (2020). An experimental investigation on strength characteristics by partial replacement of rice husk ash and Robo sand in concrete. Materials Today: Proceedings, 33, 502–507. doi:10.1016/j.matpr.2020.05.075.

Tran, V.-A., Hwang, C.-L., & Vo, D.-H. (2021). Manufacture and Engineering Properties of Cementitious Mortar Incorporating Unground Rice Husk Ash as Fine Aggregate. Journal of Materials in Civil Engineering, 33(10), 04021258. doi:10.1061/(asce)mt.1943-5533.0003888.

Subedi, S., Arce, G. A., Noorvand, H., Hassan, M. M., Barbato, M., & Mohammad, L. N. (2021). Properties of Engineered Cementitious Composites with Raw Sugarcane Bagasse Ash Used as Sand Replacement. Journal of Materials in Civil Engineering, 33(9), 04021231. doi:10.1061/(asce)mt.1943-5533.0003892.

Torres de Sande, V., Sadique, M., Pineda, P., Bras, A., Atherton, W., & Riley, M. (2021). Potential use of sugar cane bagasse ash as sand replacement for durable concrete. Journal of Building Engineering, 39, 1–19. doi:10.1016/j.jobe.2021.102277.

Murugesan, T., Vidjeapriya, R., & Bahurudeen, A. (2020). Sugarcane Bagasse Ash-Blended Concrete for Effective Resource Utilization Between Sugar and Construction Industries. Sugar Tech, 22(5), 858–869. doi:10.1007/s12355-020-00794-2.

Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, 239, 1–9. doi:10.1016/j.conbuildmat.2019.117804.

Małek, M., Łasica, W., Jackowski, M., & Kadela, M. (2020). Effect of waste glass addition as a replacement for fine aggregate on properties of mortar. Materials, 13(14), 1–19. doi:10.3390/ma13143189.

Jiao, Y., Zhang, Y., Guo, M., Zhang, L., Ning, H., & Liu, S. (2020). Mechanical and fracture properties of ultra-high performance concrete (UHPC) containing waste glass sand as partial replacement material. Journal of Cleaner Production, 277, 1–18. doi:10.1016/j.jclepro.2020.123501.

Belmokaddem, M., Mahi, A., Senhadji, Y., & Pekmezci, B. Y. (2020). Mechanical and physical properties and morphology of concrete containing plastic waste as aggregate. Construction and Building Materials, 257, 1–11. doi:10.1016/j.conbuildmat.2020.119559.

Thiam, M., & Fall, M. (2021). Mechanical, physical and microstructural properties of a mortar with melted plastic waste binder. Construction and Building Materials, 302, 1–19. doi:10.1016/j.conbuildmat.2021.124190.

Almeshal, I., Tayeh, B. A., Alyousef, R., Alabduljabbar, H., & Mohamed, A. M. (2020). Eco-friendly concrete containing recycled plastic as partial replacement for sand. Journal of Materials Research and Technology, 9(3), 4631–4643. doi:10.1016/j.jmrt.2020.02.090.

Kamal, N. L. M., Shafiq, N., Alaloul, W. S., Beddu, S., & Abd Manan, T. S. B. (2021). Application of response surface methodology for the optimization of mix design concrete using coal bottom ash as cement replacement material. Lecture Notes in Civil Engineering, 132, 396–404. doi:10.1007/978-981-33-6311-3_45.

Abbas, S., Arshad, U., Abbass, W., Nehdi, M. L., & Ahmed, A. (2020). Recycling untreated coal bottom ash with added value for mitigating alkali–silica reaction in concrete: A sustainable approach. Sustainability (Switzerland), 12(24), 1–24. doi:10.3390/su122410631.

Amat, R. C., Ismail, K. N., Ibrahim, N. M., & Rahim, N. L. (2020). Recycling municipal solid waste incineration bottom ash as cement replacement in concrete. IOP Conference Series: Earth and Environmental Science, 616(1), 1–7. doi:10.1088/1755-1315/616/1/012062.

Kim, Y. H., Kim, H. Y., Yang, K. H., & Ha, J. S. (2021). Effect of concrete unit weight on the mechanical properties of bottom ash aggregate concrete. Construction and Building Materials, 273, 1–10. doi:10.1016/j.conbuildmat.2020.121998.

Ghadzali, N. S., Ibrahim, M. H. W., Zuki, S. S. M., Sani, M. S. H., & Al-Fasih, M. Y. M. (2020). Material Characterization and Optimum Usage of Coal Bottom Ash (CBA) as Sand Replacement in Concrete. International Journal of Integrated Engineering, 12(9), 9–17. doi:10.30880/ijie.2020.12.09.002.

Shi, D., Huang, Y., Liu, S., & Han, J. (2020). Study on Relationship between Pore Structure and Mechanical Properties of Concrete Using Municipal Solid Waste Incineration Bottom ash as Fine Aggregate. IOP Conference Series: Earth and Environmental Science, 602(1), 1–9. doi:10.1088/1755-1315/602/1/012009.

Prasetia, I., Syauqi, M., & Aini, A. S. (2021). Application of central kalimantan coal ash as a sustainable construction material. IOP Conference Series: Earth and Environmental Science, 758(1), 1–8. doi:10.1088/1755-1315/758/1/012011.

Susanto, I., Irawan, R. R., Ronny, Y., & Gunawan, G. (2020). Coal Ash Waste Utilization for Environmentally Friendly Road Pavement Materials. IOP Conference Series: Earth and Environmental Science, 448(1), 1–8. doi:10.1088/1755-1315/448/1/012116.

Saputra, A. A. I., Basyaruddin, Laksono, M. H., & Muntaha, M. (2017). Influence of bottom ash of palm oil on compressive strength of concrete. AIP Conference Proceedings, 1903, 1–6. doi:10.1063/1.5011547.

ASTM International, (2020), “ASTM C595/C595M-20: Standard Specification for Blended Hydraulic Cement”, American Standards Testing Materials, West Conshohocken, United States. doi:10.1520/C0595_C0595M-21.

ASTM International, (2015), “C494/C4949M-13: Standard Specification for Chemical Admixtures for Concrete” American Standards Testing Materials, West Conshohocken, United States. doi:10.1520/C0494_C0494M-19.

ASTM International, (2019), “C39/C39M-18: Standard Test Method for Compressive Strength of cylindrical Concrete Specimens”, American Standards Testing Materials, West Conshohocken, United States. doi:10.1520/C0039_C0039M-21.

ASTM International, (2017), ASTM C496/ C496M -17, “Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens”, ASTM International, West Conshohocken, United States. doi:10.1520/C0496_C0496M-17.

ASTM International, (2016), C293/C293M-16: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Centre Point Loading), ASTM International, West Conshohocken, United States. doi:10.1520/C0293_C0293M-16.

Full Text: PDF

DOI: 10.28991/CEJ-2022-08-01-014


  • There are currently no refbacks.

Copyright (c) 2022 Hakas Prayuda, Fanny Monika

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.