Numerical Parametric Study of Fully Encased Composite Columns Subjected to Cyclic Loading
Downloads
Doi: 10.28991/CEJ-2022-08-01-04
Full Text: PDF
[2] Zhu, W., Jia, J., Gao, J., & Zhang, F. (2016). Experimental study on steel reinforced high-strength concrete columns under cyclic lateral force and constant axial load. Engineering Structures, 125, 191–204. doi:10.1016/j.engstruct.2016.07.018.
[3] Campian, C., Nagy, Z., & Pop, M. (2015). Behavior of fully encased steel-concrete composite columns subjected to monotonic and cyclic loading. Procedia Engineering, 117(1), 439–451. doi:10.1016/j.proeng.2015.08.193.
[4] Fang, L., Zhang, B., Jin, G. F., Li, K. W., & Wang, Z. L. (2015). Seismic behavior of concrete-encased steel cross-shaped columns. Journal of Constructional Steel Research, 109, 24–33. doi:10.1016/j.jcsr.2015.03.001.
[5] Xu, C. H., Zeng, L., Zhou, Q., Tu, X., & Wu, Y. (2015). Cyclic performance of concrete-encased composite columns with T-shaped steel sections. International Journal of Civil Engineering, 13(4A), 456–467. doi:10.22068/IJCE.13.4.455.
[6] Han, L. H., Liao, F. Y., Tao, Z., & Hong, Z. (2009). Performance of concrete filled steel tube reinforced concrete columns subjected to cyclic bending. Journal of Constructional Steel Research, 65(8–9), 1607–1616. doi:10.1016/j.jcsr.2009.03.013.
[7] Gajalakshmi, P., & Helena, H. J. (2012). Behaviour of concrete-filled steel columns subjected to lateral cyclic loading. Journal of Constructional Steel Research, 75, 55–63. doi:10.1016/j.jcsr.2012.03.006.
[8] Qian, W. W., Li, W., Han, L. H., & Zhao, X. L. (2016). Analytical behavior of concrete-encased CFST columns under cyclic lateral loading. Journal of Constructional Steel Research, 120, 206–220. doi:10.1016/j.jcsr.2015.12.018.
[9] Shim, C. S., Chung, Y. S., & Han, J. H. (2008). Cyclic response of concrete-encased composite columns with low steel ratio. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 161(2), 77–89. doi:10.1680/stbu.2008.161.2.77.
[10] Hsu, H. L., Jan, F. J., & Juang, J. L. (2009). Performance of composite members subjected to axial load and bi-axial bending. Journal of Constructional Steel Research, 65(4), 869–878. doi:10.1016/j.jcsr.2008.04.006.
[11] Ellobody, E., & Young, B. (2011). Numerical simulation of concrete encased steel composite columns. Journal of Constructional Steel Research, 67(2), 211–222. doi:10.1016/j.jcsr.2010.08.003.
[12] Taufik, S., & Tjahjono, B. (2019). 3D ANSYS Modeling Behaviour of Encased Steel Composite Column with Wide Flange and Hollow Section. International Journal of Mechanics and Applications, 2019(1), 10–18. doi:10.5923/j.mechanics.20190901.02.
[13] Chen, Y., Wang, T., Yang, J., & Zhao, X. (2010). Test and numerical simulation of partially encased composite columns subject to axial and cyclic horizontal loads. International Journal of Steel Structures, 10(4), 385–393. doi:10.1007/BF03215846.
[14] Naito, H., Akiyama, M., & Suzuki, M. (2011). Ductility Evaluation of Concrete-Encased Steel Bridge Piers Subjected to Lateral Cyclic Loading. Journal of Bridge Engineering, 16(1), 72–81. doi:10.1061/(asce)be.1943-5592.0000120.
[15] Yue, J., Qian, J., & Beskos, D. E. (2019). Seismic damage performance levels for concrete encased steel columns using acoustic emission tests and finite element analysis. Engineering Structures, 189(March), 471–483. doi:10.1016/j.engstruct.2019.03.077.
[16] ANSYS, "APDL, Release 15.0.” (2013).
[17] Aribert, J. M., Campian, C., & Pacurar, V. (2018). Monotonic and cyclic behaviour of fully encased composite columns and dissipative interpretation for seismic design. Stessa 2003, 115-121.
[18] Chang, X., Wei, Y. Y., & Yun, Y. C. (2012). Analysis of steel-reinforced concrete-filled-steel tubular (SRCFST) columns under cyclic loading. Construction and Building Materials, 28(1), 88–95. doi:10.1016/j.conbuildmat.2011.08.033.
[19] EN 1993-1-1/AC. (2009). Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings.
[20] EN 1994-1-1/AC. (2004). Eurocode 4, Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings.
[21] EN 1992-1-1/AC. (2004). Eurocode 2, Design of concrete structures - Part 1-1: General rules and rules for buildings.
[22] Hussan, S. P., & Bashir, A. (2015). Analysis of Earthquake Resistant Properties of RC Core Steel Composite Columns & RCC Sections Using Finite Element Analysis. International Journal of Engineering Trends and Technology, 28(7), 359–364.
[23] Si, B. J., Sun, Z. G., Ai, Q. H., Wang, D. S., & Wang, Q. X. (2008). Experiments and Simulation of Flexural-Shear Dominated Rc Bridge Piers Under Reversed Cyclic Loading. In The 14th World Conference on Earthquake Engineering (pp. 2–9).
[24] Seres, N. (2008). Numerical modelling of shear connection between concrete slab and sheeting deck. In 7th fib international PhD symposium in civil engineering. Stuttgart.
[25] Alsamawi, A. bellah, & Boumechra, N. (2021). Behaviour of fully encased composite columns under cyclic loads. Ce/papers, 4(2-4), 564–569. doi:10.1002/cepa.1331.
[26] Patil, P. S. S., Shaikh, A. N., & Niranjan, P. B. R. (2012). Non linear finite element method of analysis of reinforced concrete deep beam. International Journal of Modern Engineering Research, 2(6), 4622–4628.
[27] Ibrahim, A. M., & Mahmood, M. S. (2009). Finite element modeling of reinforced concrete beams strengthened with FRP laminates. European Journal of Scientific Research, 30(4), 526–541.
[28] Fauzan, Kurniawan, R., & Al Jauhari, Z. (2017). Finite element analysis of CES composite columns. International Journal of Civil Engineering and Technology, 8(10), 979–987.
[29] Al Amli, A. S., Al-Ansari, N., & Laue, J. (2019). Study Numerical Simulation of Stress-Strain Behavior of Reinforced Concrete Bar in Soil using Theoretical Models. Civil Engineering Journal, 5(11), 2349–2358. doi:10.28991/cej-2019-03091416.
[30] Fuschi, P., Dutko, M., Perić, D., & Owen, D. R. J. (1994). On numerical integration of the five-parameter model for concrete. Computers and Structures, 53(4), 825–838. doi:10.1016/0045-7949(94)90371-9.
[31] Zhao, W. P. (2011). Local bond-slip numerical simulation based on ANSYS contact analysis. In 2011 International Conference on Electric Technology and Civil Engineering, ICETCE 2011 - Proceedings (Vol. 0, pp. 438–441). doi:10.1109/ICETCE.2011.5775869.
[32] Ibrahim, A., & Ahmed, Q. (2012). Finite element modeling of composite steel-concrete beams with external prestressing. International Journal of Civil & Structural Engineering, 3(1), 101–116.
[33] De Nardin, S., Almeida Filho, F. M., Oliveira Filho, J., Haach, V. G., & El Debs, A. L. H. C. (2005). Non-linear analisys of the bond strength behavior on the steel-concrete interface by numerical models and pull-out tests. Proceedings of the Structures Congress and Exposition, 1077–1088. doi:10.1061/40753(171)107.
[34] Xu, C. H., Zeng, L., Zhou, Q., Tu, X., & Wu, Y. (2015). Cyclic performance of concrete-encased composite columns with T-shaped steel sections. In International Journal of Civil Engineering (Vol. 13, Issue 4A, pp. 456–467). doi:10.22068/IJCE.13.4.455.
- authors retain all copyrights - authors will not be forced to sign any copyright transfer agreements
- permission of re-useThis work (including HTML and PDF Files) is licensed under a Creative Commons Attribution 4.0 International License.
